// -*- mode: rust; -*- // // This file is part of curve25519-dalek. // Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence // See LICENSE for licensing information. // // Authors: // - Isis Agora Lovecruft // - Henry de Valence // We allow non snake_case names because coordinates in projective space are // traditionally denoted by the capitalisation of their respective // counterparts in affine space. Yeah, you heard me, rustc, I'm gonna have my // affine and projective cakes and eat both of them too. #![allow(non_snake_case)] //! An implementation of [Ristretto][ristretto_main], which provides a //! prime-order group. //! //! # The Ristretto Group //! //! Ristretto is a modification of Mike Hamburg's Decaf scheme to work //! with cofactor-\\(8\\) curves, such as Curve25519. //! //! The introduction of the Decaf paper, [_Decaf: //! Eliminating cofactors through point //! compression_](https://eprint.iacr.org/2015/673.pdf), notes that while //! most cryptographic systems require a group of prime order, most //! concrete implementations using elliptic curve groups fall short – //! they either provide a group of prime order, but with incomplete or //! variable-time addition formulae (for instance, most Weierstrass //! models), or else they provide a fast and safe implementation of a //! group whose order is not quite a prime \\(q\\), but \\(hq\\) for a //! small cofactor \\(h\\) (for instance, Edwards curves, which have //! cofactor at least \\(4\\)). //! //! This abstraction mismatch is commonly “handled” by pushing the //! complexity upwards, adding ad-hoc protocol modifications. But //! these modifications require careful analysis and are a recurring //! source of [vulnerabilities][cryptonote] and [design //! complications][ed25519_hkd]. //! //! Instead, Decaf (and Ristretto) use a quotient group to implement a //! prime-order group using a non-prime-order curve. This provides //! the correct abstraction for cryptographic systems, while retaining //! the speed and safety benefits of an Edwards curve. //! //! Decaf is named “after the procedure which divides the effect of //! coffee by \\(4\\)”. However, Curve25519 has a cofactor of //! \\(8\\). To eliminate its cofactor, Ristretto restricts further; //! this [additional restriction][ristretto_coffee] gives the //! _Ristretto_ encoding. //! //! More details on why Ristretto is necessary can be found in the //! [Why Ristretto?][why_ristretto] section of the Ristretto website. //! //! Ristretto //! points are provided in `curve25519-dalek` by the `RistrettoPoint` //! struct. //! //! ## Encoding and Decoding //! //! Encoding is done by converting to and from a `CompressedRistretto` //! struct, which is a typed wrapper around `[u8; 32]`. //! //! The encoding is not batchable, but it is possible to //! double-and-encode in a batch using //! `RistrettoPoint::double_and_compress_batch`. //! //! ## Equality Testing //! //! Testing equality of points on an Edwards curve in projective //! coordinates requires an expensive inversion. By contrast, equality //! checking in the Ristretto group can be done in projective //! coordinates without requiring an inversion, so it is much faster. //! //! The `RistrettoPoint` struct implements the //! `subtle::ConstantTimeEq` trait for constant-time equality //! checking, and the Rust `Eq` trait for variable-time equality //! checking. //! //! ## Scalars //! //! Scalars are represented by the `Scalar` struct. Each scalar has a //! canonical representative mod the group order. To attempt to load //! a supposedly-canonical scalar, use //! `Scalar::from_canonical_bytes()`. To check whether a //! representative is canonical, use `Scalar::is_canonical()`. //! //! ## Scalar Multiplication //! //! Scalar multiplication on Ristretto points is provided by: //! //! * the `*` operator between a `Scalar` and a `RistrettoPoint`, which //! performs constant-time variable-base scalar multiplication; //! //! * the `*` operator between a `Scalar` and a //! `RistrettoBasepointTable`, which performs constant-time fixed-base //! scalar multiplication; //! //! * an implementation of the //! [`MultiscalarMul`](../traits/trait.MultiscalarMul.html) trait for //! constant-time variable-base multiscalar multiplication; //! //! * an implementation of the //! [`VartimeMultiscalarMul`](../traits/trait.VartimeMultiscalarMul.html) //! trait for variable-time variable-base multiscalar multiplication; //! //! ## Random Points and Hashing to Ristretto //! //! The Ristretto group comes equipped with an Elligator map. This is //! used to implement //! //! * `RistrettoPoint::random()`, which generates random points from an //! RNG; //! //! * `RistrettoPoint::from_hash()` and //! `RistrettoPoint::hash_from_bytes()`, which perform hashing to the //! group. //! //! The Elligator map itself is not currently exposed. //! //! ## Implementation //! //! The Decaf suggestion is to use a quotient group, such as \\(\mathcal //! E / \mathcal E[4]\\) or \\(2 \mathcal E / \mathcal E[2] \\), to //! implement a prime-order group using a non-prime-order curve. //! //! This requires only changing //! //! 1. the function for equality checking (so that two representatives //! of the same coset are considered equal); //! 2. the function for encoding (so that two representatives of the //! same coset are encoded as identical bitstrings); //! 3. the function for decoding (so that only the canonical encoding of //! a coset is accepted). //! //! Internally, each coset is represented by a curve point; two points //! \\( P, Q \\) may represent the same coset in the same way that two //! points with different \\(X,Y,Z\\) coordinates may represent the //! same point. The group operations are carried out with no overhead //! using Edwards formulas. //! //! Notes on the details of the encoding can be found in the //! [Details][ristretto_notes] section of the Ristretto website. //! //! [cryptonote]: //! https://moderncrypto.org/mail-archive/curves/2017/000898.html //! [ed25519_hkd]: //! https://moderncrypto.org/mail-archive/curves/2017/000858.html //! [ristretto_coffee]: //! https://en.wikipedia.org/wiki/Ristretto //! [ristretto_notes]: //! https://ristretto.group/details/index.html //! [why_ristretto]: //! https://ristretto.group/why_ristretto.html //! [ristretto_main]: //! https://ristretto.group/ use core::borrow::Borrow; use core::fmt::Debug; use core::iter::Sum; use core::ops::{Add, Neg, Sub}; use core::ops::{AddAssign, SubAssign}; use core::ops::{Mul, MulAssign}; use rand_core::{CryptoRng, RngCore}; use digest::generic_array::typenum::U64; use digest::Digest; use constants; use field::FieldElement; use subtle::Choice; use subtle::ConditionallySelectable; use subtle::ConditionallyNegatable; use subtle::ConstantTimeEq; use edwards::EdwardsBasepointTable; use edwards::EdwardsPoint; #[allow(unused_imports)] use prelude::*; use scalar::Scalar; use traits::Identity; #[cfg(any(feature = "alloc", feature = "std"))] use traits::{MultiscalarMul, VartimeMultiscalarMul, VartimePrecomputedMultiscalarMul}; #[cfg(not(all( feature = "simd_backend", any(target_feature = "avx2", target_feature = "avx512ifma") )))] use backend::serial::scalar_mul; #[cfg(all( feature = "simd_backend", any(target_feature = "avx2", target_feature = "avx512ifma") ))] use backend::vector::scalar_mul; // ------------------------------------------------------------------------ // Compressed points // ------------------------------------------------------------------------ /// A Ristretto point, in compressed wire format. /// /// The Ristretto encoding is canonical, so two points are equal if and /// only if their encodings are equal. #[derive(Copy, Clone, Eq, PartialEq)] pub struct CompressedRistretto(pub [u8; 32]); impl ConstantTimeEq for CompressedRistretto { fn ct_eq(&self, other: &CompressedRistretto) -> Choice { self.as_bytes().ct_eq(other.as_bytes()) } } impl CompressedRistretto { /// Copy the bytes of this `CompressedRistretto`. pub fn to_bytes(&self) -> [u8; 32] { self.0 } /// View this `CompressedRistretto` as an array of bytes. pub fn as_bytes(&self) -> &[u8; 32] { &self.0 } /// Construct a `CompressedRistretto` from a slice of bytes. /// /// # Panics /// /// If the input `bytes` slice does not have a length of 32. pub fn from_slice(bytes: &[u8]) -> CompressedRistretto { let mut tmp = [0u8; 32]; tmp.copy_from_slice(bytes); CompressedRistretto(tmp) } /// Attempt to decompress to an `RistrettoPoint`. /// /// # Return /// /// - `Some(RistrettoPoint)` if `self` was the canonical encoding of a point; /// /// - `None` if `self` was not the canonical encoding of a point. pub fn decompress(&self) -> Option { // Step 1. Check s for validity: // 1.a) s must be 32 bytes (we get this from the type system) // 1.b) s < p // 1.c) s is nonnegative // // Our decoding routine ignores the high bit, so the only // possible failure for 1.b) is if someone encodes s in 0..18 // as s+p in 2^255-19..2^255-1. We can check this by // converting back to bytes, and checking that we get the // original input, since our encoding routine is canonical. let s = FieldElement::from_bytes(self.as_bytes()); let s_bytes_check = s.to_bytes(); let s_encoding_is_canonical = &s_bytes_check[..].ct_eq(self.as_bytes()); let s_is_negative = s.is_negative(); if s_encoding_is_canonical.unwrap_u8() == 0u8 || s_is_negative.unwrap_u8() == 1u8 { return None; } // Step 2. Compute (X:Y:Z:T). let one = FieldElement::one(); let ss = s.square(); let u1 = &one - &ss; // 1 + as² let u2 = &one + &ss; // 1 - as² where a=-1 let u2_sqr = u2.square(); // (1 - as²)² // v == ad(1+as²)² - (1-as²)² where d=-121665/121666 let v = &(&(-&constants::EDWARDS_D) * &u1.square()) - &u2_sqr; let (ok, I) = (&v * &u2_sqr).invsqrt(); // 1/sqrt(v*u_2²) let Dx = &I * &u2; // 1/sqrt(v) let Dy = &I * &(&Dx * &v); // 1/u2 // x == | 2s/sqrt(v) | == + sqrt(4s²/(ad(1+as²)² - (1-as²)²)) let mut x = &(&s + &s) * &Dx; let x_neg = x.is_negative(); x.conditional_negate(x_neg); // y == (1-as²)/(1+as²) let y = &u1 * &Dy; // t == ((1+as²) sqrt(4s²/(ad(1+as²)² - (1-as²)²)))/(1-as²) let t = &x * &y; if ok.unwrap_u8() == 0u8 || t.is_negative().unwrap_u8() == 1u8 || y.is_zero().unwrap_u8() == 1u8 { None } else { Some(RistrettoPoint(EdwardsPoint{X: x, Y: y, Z: one, T: t})) } } } impl Identity for CompressedRistretto { fn identity() -> CompressedRistretto { CompressedRistretto([0u8; 32]) } } impl Default for CompressedRistretto { fn default() -> CompressedRistretto { CompressedRistretto::identity() } } // ------------------------------------------------------------------------ // Serde support // ------------------------------------------------------------------------ // Serializes to and from `RistrettoPoint` directly, doing compression // and decompression internally. This means that users can create // structs containing `RistrettoPoint`s and use Serde's derived // serializers to serialize those structures. #[cfg(feature = "serde")] use serde::{self, Serialize, Deserialize, Serializer, Deserializer}; #[cfg(feature = "serde")] use serde::de::Visitor; #[cfg(feature = "serde")] impl Serialize for RistrettoPoint { fn serialize(&self, serializer: S) -> Result where S: Serializer { use serde::ser::SerializeTuple; let mut tup = serializer.serialize_tuple(32)?; for byte in self.compress().as_bytes().iter() { tup.serialize_element(byte)?; } tup.end() } } #[cfg(feature = "serde")] impl Serialize for CompressedRistretto { fn serialize(&self, serializer: S) -> Result where S: Serializer { use serde::ser::SerializeTuple; let mut tup = serializer.serialize_tuple(32)?; for byte in self.as_bytes().iter() { tup.serialize_element(byte)?; } tup.end() } } #[cfg(feature = "serde")] impl<'de> Deserialize<'de> for RistrettoPoint { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de> { struct RistrettoPointVisitor; impl<'de> Visitor<'de> for RistrettoPointVisitor { type Value = RistrettoPoint; fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { formatter.write_str("a valid point in Ristretto format") } fn visit_seq(self, mut seq: A) -> Result where A: serde::de::SeqAccess<'de> { let mut bytes = [0u8; 32]; for i in 0..32 { bytes[i] = seq.next_element()? .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?; } CompressedRistretto(bytes) .decompress() .ok_or(serde::de::Error::custom("decompression failed")) } } deserializer.deserialize_tuple(32, RistrettoPointVisitor) } } #[cfg(feature = "serde")] impl<'de> Deserialize<'de> for CompressedRistretto { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de> { struct CompressedRistrettoVisitor; impl<'de> Visitor<'de> for CompressedRistrettoVisitor { type Value = CompressedRistretto; fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { formatter.write_str("32 bytes of data") } fn visit_seq(self, mut seq: A) -> Result where A: serde::de::SeqAccess<'de> { let mut bytes = [0u8; 32]; for i in 0..32 { bytes[i] = seq.next_element()? .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?; } Ok(CompressedRistretto(bytes)) } } deserializer.deserialize_tuple(32, CompressedRistrettoVisitor) } } // ------------------------------------------------------------------------ // Internal point representations // ------------------------------------------------------------------------ /// A `RistrettoPoint` represents a point in the Ristretto group for /// Curve25519. Ristretto, a variant of Decaf, constructs a /// prime-order group as a quotient group of a subgroup of (the /// Edwards form of) Curve25519. /// /// Internally, a `RistrettoPoint` is implemented as a wrapper type /// around `EdwardsPoint`, with custom equality, compression, and /// decompression routines to account for the quotient. This means that /// operations on `RistrettoPoint`s are exactly as fast as operations on /// `EdwardsPoint`s. /// #[derive(Copy, Clone)] pub struct RistrettoPoint(pub(crate) EdwardsPoint); impl RistrettoPoint { /// Compress this point using the Ristretto encoding. pub fn compress(&self) -> CompressedRistretto { let mut X = self.0.X; let mut Y = self.0.Y; let Z = &self.0.Z; let T = &self.0.T; let u1 = &(Z + &Y) * &(Z - &Y); let u2 = &X * &Y; // Ignore return value since this is always square let (_, invsqrt) = (&u1 * &u2.square()).invsqrt(); let i1 = &invsqrt * &u1; let i2 = &invsqrt * &u2; let z_inv = &i1 * &(&i2 * T); let mut den_inv = i2; let iX = &X * &constants::SQRT_M1; let iY = &Y * &constants::SQRT_M1; let ristretto_magic = &constants::INVSQRT_A_MINUS_D; let enchanted_denominator = &i1 * ristretto_magic; let rotate = (T * &z_inv).is_negative(); X.conditional_assign(&iY, rotate); Y.conditional_assign(&iX, rotate); den_inv.conditional_assign(&enchanted_denominator, rotate); Y.conditional_negate((&X * &z_inv).is_negative()); let mut s = &den_inv * &(Z - &Y); let s_is_negative = s.is_negative(); s.conditional_negate(s_is_negative); CompressedRistretto(s.to_bytes()) } /// Double-and-compress a batch of points. The Ristretto encoding /// is not batchable, since it requires an inverse square root. /// /// However, given input points \\( P\_1, \ldots, P\_n, \\) /// it is possible to compute the encodings of their doubles \\( /// \mathrm{enc}( [2]P\_1), \ldots, \mathrm{enc}( [2]P\_n ) \\) /// in a batch. /// /// ``` /// # extern crate curve25519_dalek; /// # use curve25519_dalek::ristretto::RistrettoPoint; /// extern crate rand_core; /// use rand_core::OsRng; /// /// # // Need fn main() here in comment so the doctest compiles /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests /// # fn main() { /// let mut rng = OsRng; /// let points: Vec = /// (0..32).map(|_| RistrettoPoint::random(&mut rng)).collect(); /// /// let compressed = RistrettoPoint::double_and_compress_batch(&points); /// /// for (P, P2_compressed) in points.iter().zip(compressed.iter()) { /// assert_eq!(*P2_compressed, (P + P).compress()); /// } /// # } /// ``` #[cfg(feature = "alloc")] pub fn double_and_compress_batch<'a, I>(points: I) -> Vec where I: IntoIterator { #[derive(Copy, Clone, Debug)] struct BatchCompressState { e: FieldElement, f: FieldElement, g: FieldElement, h: FieldElement, eg: FieldElement, fh: FieldElement, } impl BatchCompressState { fn efgh(&self) -> FieldElement { &self.eg * &self.fh } } impl<'a> From<&'a RistrettoPoint> for BatchCompressState { fn from(P: &'a RistrettoPoint) -> BatchCompressState { let XX = P.0.X.square(); let YY = P.0.Y.square(); let ZZ = P.0.Z.square(); let dTT = &P.0.T.square() * &constants::EDWARDS_D; let e = &P.0.X * &(&P.0.Y + &P.0.Y); // = 2*X*Y let f = &ZZ + &dTT; // = Z^2 + d*T^2 let g = &YY + &XX; // = Y^2 - a*X^2 let h = &ZZ - &dTT; // = Z^2 - d*T^2 let eg = &e * &g; let fh = &f * &h; BatchCompressState{ e, f, g, h, eg, fh } } } let states: Vec = points.into_iter().map(BatchCompressState::from).collect(); let mut invs: Vec = states.iter().map(|state| state.efgh()).collect(); FieldElement::batch_invert(&mut invs[..]); states.iter().zip(invs.iter()).map(|(state, inv): (&BatchCompressState, &FieldElement)| { let Zinv = &state.eg * &inv; let Tinv = &state.fh * &inv; let mut magic = constants::INVSQRT_A_MINUS_D; let negcheck1 = (&state.eg * &Zinv).is_negative(); let mut e = state.e; let mut g = state.g; let mut h = state.h; let minus_e = -&e; let f_times_sqrta = &state.f * &constants::SQRT_M1; e.conditional_assign(&state.g, negcheck1); g.conditional_assign(&minus_e, negcheck1); h.conditional_assign(&f_times_sqrta, negcheck1); magic.conditional_assign(&constants::SQRT_M1, negcheck1); let negcheck2 = (&(&h * &e) * &Zinv).is_negative(); g.conditional_negate(negcheck2); let mut s = &(&h - &g) * &(&magic * &(&g * &Tinv)); let s_is_negative = s.is_negative(); s.conditional_negate(s_is_negative); CompressedRistretto(s.to_bytes()) }).collect() } /// Return the coset self + E[4], for debugging. fn coset4(&self) -> [EdwardsPoint; 4] { [ self.0 , &self.0 + &constants::EIGHT_TORSION[2] , &self.0 + &constants::EIGHT_TORSION[4] , &self.0 + &constants::EIGHT_TORSION[6] ] } /// Computes the Ristretto Elligator map. /// /// # Note /// /// This method is not public because it's just used for hashing /// to a point -- proper elligator support is deferred for now. pub fn elligator_ristretto_flavor(r_0: &FieldElement) -> RistrettoPoint { let i = &constants::SQRT_M1; let d = &constants::EDWARDS_D; let one_minus_d_sq = &constants::ONE_MINUS_EDWARDS_D_SQUARED; let d_minus_one_sq = &constants::EDWARDS_D_MINUS_ONE_SQUARED; let mut c = constants::MINUS_ONE; let one = FieldElement::one(); let r = i * &r_0.square(); let N_s = &(&r + &one) * &one_minus_d_sq; let D = &(&c - &(d * &r)) * &(&r + d); let (Ns_D_is_sq, mut s) = FieldElement::sqrt_ratio_i(&N_s, &D); let mut s_prime = &s * r_0; let s_prime_is_pos = !s_prime.is_negative(); s_prime.conditional_negate(s_prime_is_pos); s.conditional_assign(&s_prime, !Ns_D_is_sq); c.conditional_assign(&r, !Ns_D_is_sq); let N_t = &(&(&c * &(&r - &one)) * &d_minus_one_sq) - &D; let s_sq = s.square(); use backend::serial::curve_models::CompletedPoint; // The conversion from W_i is exactly the conversion from P1xP1. RistrettoPoint(CompletedPoint{ X: &(&s + &s) * &D, Z: &N_t * &constants::SQRT_AD_MINUS_ONE, Y: &FieldElement::one() - &s_sq, T: &FieldElement::one() + &s_sq, }.to_extended()) } /// Return a `RistrettoPoint` chosen uniformly at random using a user-provided RNG. /// /// # Inputs /// /// * `rng`: any RNG which implements the `RngCore + CryptoRng` interface. /// /// # Returns /// /// A random element of the Ristretto group. /// /// # Implementation /// /// Uses the Ristretto-flavoured Elligator 2 map, so that the /// discrete log of the output point with respect to any other /// point should be unknown. The map is applied twice and the /// results are added, to ensure a uniform distribution. pub fn random(rng: &mut R) -> Self { let mut uniform_bytes = [0u8; 64]; rng.fill_bytes(&mut uniform_bytes); RistrettoPoint::from_uniform_bytes(&uniform_bytes) } /// Hash a slice of bytes into a `RistrettoPoint`. /// /// Takes a type parameter `D`, which is any `Digest` producing 64 /// bytes of output. /// /// Convenience wrapper around `from_hash`. /// /// # Implementation /// /// Uses the Ristretto-flavoured Elligator 2 map, so that the /// discrete log of the output point with respect to any other /// point should be unknown. The map is applied twice and the /// results are added, to ensure a uniform distribution. /// /// # Example /// /// ``` /// # extern crate curve25519_dalek; /// # use curve25519_dalek::ristretto::RistrettoPoint; /// extern crate sha2; /// use sha2::Sha512; /// /// # // Need fn main() here in comment so the doctest compiles /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests /// # fn main() { /// let msg = "To really appreciate architecture, you may even need to commit a murder"; /// let P = RistrettoPoint::hash_from_bytes::(msg.as_bytes()); /// # } /// ``` /// pub fn hash_from_bytes(input: &[u8]) -> RistrettoPoint where D: Digest + Default { let mut hash = D::default(); hash.input(input); RistrettoPoint::from_hash(hash) } /// Construct a `RistrettoPoint` from an existing `Digest` instance. /// /// Use this instead of `hash_from_bytes` if it is more convenient /// to stream data into the `Digest` than to pass a single byte /// slice. pub fn from_hash(hash: D) -> RistrettoPoint where D: Digest + Default { // dealing with generic arrays is clumsy, until const generics land let output = hash.result(); let mut output_bytes = [0u8; 64]; output_bytes.copy_from_slice(&output.as_slice()); RistrettoPoint::from_uniform_bytes(&output_bytes) } /// Construct a `RistrettoPoint` from 64 bytes of data. /// /// If the input bytes are uniformly distributed, the resulting /// point will be uniformly distributed over the group, and its /// discrete log with respect to other points should be unknown. /// /// # Implementation /// /// This function splits the input array into two 32-byte halves, /// takes the low 255 bits of each half mod p, applies the /// Ristretto-flavored Elligator map to each, and adds the results. pub fn from_uniform_bytes(bytes: &[u8; 64]) -> RistrettoPoint { let mut r_1_bytes = [0u8; 32]; r_1_bytes.copy_from_slice(&bytes[0..32]); let r_1 = FieldElement::from_bytes(&r_1_bytes); let R_1 = RistrettoPoint::elligator_ristretto_flavor(&r_1); let mut r_2_bytes = [0u8; 32]; r_2_bytes.copy_from_slice(&bytes[32..64]); let r_2 = FieldElement::from_bytes(&r_2_bytes); let R_2 = RistrettoPoint::elligator_ristretto_flavor(&r_2); // Applying Elligator twice and adding the results ensures a // uniform distribution. &R_1 + &R_2 } } impl Identity for RistrettoPoint { fn identity() -> RistrettoPoint { RistrettoPoint(EdwardsPoint::identity()) } } impl Default for RistrettoPoint { fn default() -> RistrettoPoint { RistrettoPoint::identity() } } // ------------------------------------------------------------------------ // Equality // ------------------------------------------------------------------------ impl PartialEq for RistrettoPoint { fn eq(&self, other: &RistrettoPoint) -> bool { self.ct_eq(other).unwrap_u8() == 1u8 } } impl ConstantTimeEq for RistrettoPoint { /// Test equality between two `RistrettoPoint`s. /// /// # Returns /// /// * `Choice(1)` if the two `RistrettoPoint`s are equal; /// * `Choice(0)` otherwise. fn ct_eq(&self, other: &RistrettoPoint) -> Choice { let X1Y2 = &self.0.X * &other.0.Y; let Y1X2 = &self.0.Y * &other.0.X; let X1X2 = &self.0.X * &other.0.X; let Y1Y2 = &self.0.Y * &other.0.Y; X1Y2.ct_eq(&Y1X2) | X1X2.ct_eq(&Y1Y2) } } impl Eq for RistrettoPoint {} // ------------------------------------------------------------------------ // Arithmetic // ------------------------------------------------------------------------ impl<'a, 'b> Add<&'b RistrettoPoint> for &'a RistrettoPoint { type Output = RistrettoPoint; fn add(self, other: &'b RistrettoPoint) -> RistrettoPoint { RistrettoPoint(&self.0 + &other.0) } } define_add_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint); impl<'b> AddAssign<&'b RistrettoPoint> for RistrettoPoint { fn add_assign(&mut self, _rhs: &RistrettoPoint) { *self = (self as &RistrettoPoint) + _rhs; } } define_add_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint); impl<'a, 'b> Sub<&'b RistrettoPoint> for &'a RistrettoPoint { type Output = RistrettoPoint; fn sub(self, other: &'b RistrettoPoint) -> RistrettoPoint { RistrettoPoint(&self.0 - &other.0) } } define_sub_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint); impl<'b> SubAssign<&'b RistrettoPoint> for RistrettoPoint { fn sub_assign(&mut self, _rhs: &RistrettoPoint) { *self = (self as &RistrettoPoint) - _rhs; } } define_sub_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint); impl Sum for RistrettoPoint where T: Borrow { fn sum(iter: I) -> Self where I: Iterator { iter.fold(RistrettoPoint::identity(), |acc, item| acc + item.borrow()) } } impl<'a> Neg for &'a RistrettoPoint { type Output = RistrettoPoint; fn neg(self) -> RistrettoPoint { RistrettoPoint(-&self.0) } } impl Neg for RistrettoPoint { type Output = RistrettoPoint; fn neg(self) -> RistrettoPoint { -&self } } impl<'b> MulAssign<&'b Scalar> for RistrettoPoint { fn mul_assign(&mut self, scalar: &'b Scalar) { let result = (self as &RistrettoPoint) * scalar; *self = result; } } impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint { type Output = RistrettoPoint; /// Scalar multiplication: compute `scalar * self`. fn mul(self, scalar: &'b Scalar) -> RistrettoPoint { RistrettoPoint(self.0 * scalar) } } impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar { type Output = RistrettoPoint; /// Scalar multiplication: compute `self * scalar`. fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint { RistrettoPoint(self * point.0) } } define_mul_assign_variants!(LHS = RistrettoPoint, RHS = Scalar); define_mul_variants!(LHS = RistrettoPoint, RHS = Scalar, Output = RistrettoPoint); define_mul_variants!(LHS = Scalar, RHS = RistrettoPoint, Output = RistrettoPoint); // ------------------------------------------------------------------------ // Multiscalar Multiplication impls // ------------------------------------------------------------------------ // These use iterator combinators to unwrap the underlying points and // forward to the EdwardsPoint implementations. #[cfg(feature = "alloc")] impl MultiscalarMul for RistrettoPoint { type Point = RistrettoPoint; fn multiscalar_mul(scalars: I, points: J) -> RistrettoPoint where I: IntoIterator, I::Item: Borrow, J: IntoIterator, J::Item: Borrow, { let extended_points = points.into_iter().map(|P| P.borrow().0); RistrettoPoint( EdwardsPoint::multiscalar_mul(scalars, extended_points) ) } } #[cfg(feature = "alloc")] impl VartimeMultiscalarMul for RistrettoPoint { type Point = RistrettoPoint; fn optional_multiscalar_mul(scalars: I, points: J) -> Option where I: IntoIterator, I::Item: Borrow, J: IntoIterator>, { let extended_points = points.into_iter().map(|opt_P| opt_P.map(|P| P.borrow().0)); EdwardsPoint::optional_multiscalar_mul(scalars, extended_points).map(RistrettoPoint) } } /// Precomputation for variable-time multiscalar multiplication with `RistrettoPoint`s. // This wraps the inner implementation in a facade type so that we can // decouple stability of the inner type from the stability of the // outer type. #[cfg(feature = "alloc")] pub struct VartimeRistrettoPrecomputation(scalar_mul::precomputed_straus::VartimePrecomputedStraus); #[cfg(feature = "alloc")] impl VartimePrecomputedMultiscalarMul for VartimeRistrettoPrecomputation { type Point = RistrettoPoint; fn new(static_points: I) -> Self where I: IntoIterator, I::Item: Borrow, { Self( scalar_mul::precomputed_straus::VartimePrecomputedStraus::new( static_points.into_iter().map(|P| P.borrow().0), ), ) } fn optional_mixed_multiscalar_mul( &self, static_scalars: I, dynamic_scalars: J, dynamic_points: K, ) -> Option where I: IntoIterator, I::Item: Borrow, J: IntoIterator, J::Item: Borrow, K: IntoIterator>, { self.0 .optional_mixed_multiscalar_mul( static_scalars, dynamic_scalars, dynamic_points.into_iter().map(|P_opt| P_opt.map(|P| P.0)), ) .map(RistrettoPoint) } } impl RistrettoPoint { /// Compute \\(aA + bB\\) in variable time, where \\(B\\) is the /// Ristretto basepoint. pub fn vartime_double_scalar_mul_basepoint( a: &Scalar, A: &RistrettoPoint, b: &Scalar, ) -> RistrettoPoint { RistrettoPoint( EdwardsPoint::vartime_double_scalar_mul_basepoint(a, &A.0, b) ) } } /// A precomputed table of multiples of a basepoint, used to accelerate /// scalar multiplication. /// /// A precomputed table of multiples of the Ristretto basepoint is /// available in the `constants` module: /// ``` /// use curve25519_dalek::constants; /// use curve25519_dalek::scalar::Scalar; /// /// let a = Scalar::from(87329482u64); /// let P = &a * &constants::RISTRETTO_BASEPOINT_TABLE; /// ``` #[derive(Clone)] pub struct RistrettoBasepointTable(pub(crate) EdwardsBasepointTable); impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable { type Output = RistrettoPoint; fn mul(self, scalar: &'b Scalar) -> RistrettoPoint { RistrettoPoint(&self.0 * scalar) } } impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar { type Output = RistrettoPoint; fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint { RistrettoPoint(self * &basepoint_table.0) } } impl RistrettoBasepointTable { /// Create a precomputed table of multiples of the given `basepoint`. pub fn create(basepoint: &RistrettoPoint) -> RistrettoBasepointTable { RistrettoBasepointTable(EdwardsBasepointTable::create(&basepoint.0)) } /// Get the basepoint for this table as a `RistrettoPoint`. pub fn basepoint(&self) -> RistrettoPoint { RistrettoPoint(self.0.basepoint()) } } // ------------------------------------------------------------------------ // Constant-time conditional selection // ------------------------------------------------------------------------ impl ConditionallySelectable for RistrettoPoint { /// Conditionally select between `self` and `other`. /// /// # Example /// /// ``` /// # extern crate subtle; /// # extern crate curve25519_dalek; /// # /// use subtle::ConditionallySelectable; /// use subtle::Choice; /// # /// # use curve25519_dalek::traits::Identity; /// # use curve25519_dalek::ristretto::RistrettoPoint; /// # use curve25519_dalek::constants; /// # fn main() { /// /// let A = RistrettoPoint::identity(); /// let B = constants::RISTRETTO_BASEPOINT_POINT; /// /// let mut P = A; /// /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(0)); /// assert_eq!(P, A); /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(1)); /// assert_eq!(P, B); /// # } /// ``` fn conditional_select( a: &RistrettoPoint, b: &RistrettoPoint, choice: Choice, ) -> RistrettoPoint { RistrettoPoint(EdwardsPoint::conditional_select(&a.0, &b.0, choice)) } } // ------------------------------------------------------------------------ // Debug traits // ------------------------------------------------------------------------ impl Debug for CompressedRistretto { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "CompressedRistretto: {:?}", self.as_bytes()) } } impl Debug for RistrettoPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { let coset = self.coset4(); write!(f, "RistrettoPoint: coset \n{:?}\n{:?}\n{:?}\n{:?}", coset[0], coset[1], coset[2], coset[3]) } } // ------------------------------------------------------------------------ // Tests // ------------------------------------------------------------------------ #[cfg(test)] mod test { use rand_core::OsRng; use scalar::Scalar; use constants; use edwards::CompressedEdwardsY; use traits::{Identity}; use super::*; #[test] #[cfg(feature = "serde")] fn serde_bincode_basepoint_roundtrip() { use bincode; let encoded = bincode::serialize(&constants::RISTRETTO_BASEPOINT_POINT).unwrap(); let enc_compressed = bincode::serialize(&constants::RISTRETTO_BASEPOINT_COMPRESSED).unwrap(); assert_eq!(encoded, enc_compressed); // Check that the encoding is 32 bytes exactly assert_eq!(encoded.len(), 32); let dec_uncompressed: RistrettoPoint = bincode::deserialize(&encoded).unwrap(); let dec_compressed: CompressedRistretto = bincode::deserialize(&encoded).unwrap(); assert_eq!(dec_uncompressed, constants::RISTRETTO_BASEPOINT_POINT); assert_eq!(dec_compressed, constants::RISTRETTO_BASEPOINT_COMPRESSED); // Check that the encoding itself matches the usual one let raw_bytes = constants::RISTRETTO_BASEPOINT_COMPRESSED.as_bytes(); let bp: RistrettoPoint = bincode::deserialize(raw_bytes).unwrap(); assert_eq!(bp, constants::RISTRETTO_BASEPOINT_POINT); } #[test] fn scalarmult_ristrettopoint_works_both_ways() { let P = constants::RISTRETTO_BASEPOINT_POINT; let s = Scalar::from(999u64); let P1 = &P * &s; let P2 = &s * &P; assert!(P1.compress().as_bytes() == P2.compress().as_bytes()); } #[test] fn impl_sum() { // Test that sum works for non-empty iterators let BASE = constants::RISTRETTO_BASEPOINT_POINT; let s1 = Scalar::from(999u64); let P1 = &BASE * &s1; let s2 = Scalar::from(333u64); let P2 = &BASE * &s2; let vec = vec![P1.clone(), P2.clone()]; let sum: RistrettoPoint = vec.iter().sum(); assert_eq!(sum, P1 + P2); // Test that sum works for the empty iterator let empty_vector: Vec = vec![]; let sum: RistrettoPoint = empty_vector.iter().sum(); assert_eq!(sum, RistrettoPoint::identity()); // Test that sum works on owning iterators let s = Scalar::from(2u64); let mapped = vec.iter().map(|x| x * s); let sum: RistrettoPoint = mapped.sum(); assert_eq!(sum, &P1 * &s + &P2 * &s); } #[test] fn decompress_negative_s_fails() { // constants::d is neg, so decompression should fail as |d| != d. let bad_compressed = CompressedRistretto(constants::EDWARDS_D.to_bytes()); assert!(bad_compressed.decompress().is_none()); } #[test] fn decompress_id() { let compressed_id = CompressedRistretto::identity(); let id = compressed_id.decompress().unwrap(); let mut identity_in_coset = false; for P in &id.coset4() { if P.compress() == CompressedEdwardsY::identity() { identity_in_coset = true; } } assert!(identity_in_coset); } #[test] fn compress_id() { let id = RistrettoPoint::identity(); assert_eq!(id.compress(), CompressedRistretto::identity()); } #[test] fn basepoint_roundtrip() { let bp_compressed_ristretto = constants::RISTRETTO_BASEPOINT_POINT.compress(); let bp_recaf = bp_compressed_ristretto.decompress().unwrap().0; // Check that bp_recaf differs from bp by a point of order 4 let diff = &constants::RISTRETTO_BASEPOINT_POINT.0 - &bp_recaf; let diff4 = diff.mul_by_pow_2(2); assert_eq!(diff4.compress(), CompressedEdwardsY::identity()); } #[test] fn encodings_of_small_multiples_of_basepoint() { // Table of encodings of i*basepoint // Generated using ristretto.sage let compressed = [ CompressedRistretto([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), CompressedRistretto([226, 242, 174, 10, 106, 188, 78, 113, 168, 132, 169, 97, 197, 0, 81, 95, 88, 227, 11, 106, 165, 130, 221, 141, 182, 166, 89, 69, 224, 141, 45, 118]), CompressedRistretto([106, 73, 50, 16, 247, 73, 156, 209, 127, 236, 181, 16, 174, 12, 234, 35, 161, 16, 232, 213, 185, 1, 248, 172, 173, 211, 9, 92, 115, 163, 185, 25]), CompressedRistretto([148, 116, 31, 93, 93, 82, 117, 94, 206, 79, 35, 240, 68, 238, 39, 213, 209, 234, 30, 43, 209, 150, 180, 98, 22, 107, 22, 21, 42, 157, 2, 89]), CompressedRistretto([218, 128, 134, 39, 115, 53, 139, 70, 111, 250, 223, 224, 179, 41, 58, 179, 217, 253, 83, 197, 234, 108, 149, 83, 88, 245, 104, 50, 45, 175, 106, 87]), CompressedRistretto([232, 130, 177, 49, 1, 107, 82, 193, 211, 51, 112, 128, 24, 124, 247, 104, 66, 62, 252, 203, 181, 23, 187, 73, 90, 184, 18, 196, 22, 15, 244, 78]), CompressedRistretto([246, 71, 70, 211, 201, 43, 19, 5, 14, 216, 216, 2, 54, 167, 240, 0, 124, 59, 63, 150, 47, 91, 167, 147, 209, 154, 96, 30, 187, 29, 244, 3]), CompressedRistretto([68, 245, 53, 32, 146, 110, 200, 31, 189, 90, 56, 120, 69, 190, 183, 223, 133, 169, 106, 36, 236, 225, 135, 56, 189, 207, 166, 167, 130, 42, 23, 109]), CompressedRistretto([144, 50, 147, 216, 242, 40, 126, 190, 16, 226, 55, 77, 193, 165, 62, 11, 200, 135, 229, 146, 105, 159, 2, 208, 119, 213, 38, 60, 221, 85, 96, 28]), CompressedRistretto([2, 98, 42, 206, 143, 115, 3, 163, 28, 175, 198, 63, 143, 196, 143, 220, 22, 225, 200, 200, 210, 52, 178, 240, 214, 104, 82, 130, 169, 7, 96, 49]), CompressedRistretto([32, 112, 111, 215, 136, 178, 114, 10, 30, 210, 165, 218, 212, 149, 43, 1, 244, 19, 188, 240, 231, 86, 77, 232, 205, 200, 22, 104, 158, 45, 185, 95]), CompressedRistretto([188, 232, 63, 139, 165, 221, 47, 165, 114, 134, 76, 36, 186, 24, 16, 249, 82, 43, 198, 0, 74, 254, 149, 135, 122, 199, 50, 65, 202, 253, 171, 66]), CompressedRistretto([228, 84, 158, 225, 107, 154, 160, 48, 153, 202, 32, 140, 103, 173, 175, 202, 250, 76, 63, 62, 78, 83, 3, 222, 96, 38, 227, 202, 143, 248, 68, 96]), CompressedRistretto([170, 82, 224, 0, 223, 46, 22, 245, 95, 177, 3, 47, 195, 59, 196, 39, 66, 218, 214, 189, 90, 143, 192, 190, 1, 103, 67, 108, 89, 72, 80, 31]), CompressedRistretto([70, 55, 107, 128, 244, 9, 178, 157, 194, 181, 246, 240, 197, 37, 145, 153, 8, 150, 229, 113, 111, 65, 71, 124, 211, 0, 133, 171, 127, 16, 48, 30]), CompressedRistretto([224, 196, 24, 247, 200, 217, 196, 205, 215, 57, 91, 147, 234, 18, 79, 58, 217, 144, 33, 187, 104, 29, 252, 51, 2, 169, 217, 154, 46, 83, 230, 78]), ]; let mut bp = RistrettoPoint::identity(); for i in 0..16 { assert_eq!(bp.compress(), compressed[i]); bp = &bp + &constants::RISTRETTO_BASEPOINT_POINT; } } #[test] fn four_torsion_basepoint() { let bp = constants::RISTRETTO_BASEPOINT_POINT; let bp_coset = bp.coset4(); for i in 0..4 { assert_eq!(bp, RistrettoPoint(bp_coset[i])); } } #[test] fn four_torsion_random() { let mut rng = OsRng; let B = &constants::RISTRETTO_BASEPOINT_TABLE; let P = B * &Scalar::random(&mut rng); let P_coset = P.coset4(); for i in 0..4 { assert_eq!(P, RistrettoPoint(P_coset[i])); } } #[test] fn elligator_vs_ristretto_sage() { // Test vectors extracted from ristretto.sage. // // Notice that all of the byte sequences have bit 255 set to 0; this is because // ristretto.sage does not mask the high bit of a field element. When the high bit is set, // the ristretto.sage elligator implementation gives different results, since it takes a // different field element as input. let bytes: [[u8;32]; 16] = [ [184, 249, 135, 49, 253, 123, 89, 113, 67, 160, 6, 239, 7, 105, 211, 41, 192, 249, 185, 57, 9, 102, 70, 198, 15, 127, 7, 26, 160, 102, 134, 71], [229, 14, 241, 227, 75, 9, 118, 60, 128, 153, 226, 21, 183, 217, 91, 136, 98, 0, 231, 156, 124, 77, 82, 139, 142, 134, 164, 169, 169, 62, 250, 52], [115, 109, 36, 220, 180, 223, 99, 6, 204, 169, 19, 29, 169, 68, 84, 23, 21, 109, 189, 149, 127, 205, 91, 102, 172, 35, 112, 35, 134, 69, 186, 34], [16, 49, 96, 107, 171, 199, 164, 9, 129, 16, 64, 62, 241, 63, 132, 173, 209, 160, 112, 215, 105, 50, 157, 81, 253, 105, 1, 154, 229, 25, 120, 83], [156, 131, 161, 162, 236, 251, 5, 187, 167, 171, 17, 178, 148, 210, 90, 207, 86, 21, 79, 161, 167, 215, 234, 1, 136, 242, 182, 248, 38, 85, 79, 86], [251, 177, 124, 54, 18, 101, 75, 235, 245, 186, 19, 46, 133, 157, 229, 64, 10, 136, 181, 185, 78, 144, 254, 167, 137, 49, 107, 10, 61, 10, 21, 25], [232, 193, 20, 68, 240, 77, 186, 77, 183, 40, 44, 86, 150, 31, 198, 212, 76, 81, 3, 217, 197, 8, 126, 128, 126, 152, 164, 208, 153, 44, 189, 77], [173, 229, 149, 177, 37, 230, 30, 69, 61, 56, 172, 190, 219, 115, 167, 194, 71, 134, 59, 75, 28, 244, 118, 26, 162, 97, 64, 16, 15, 189, 30, 64], [106, 71, 61, 107, 250, 117, 42, 151, 91, 202, 212, 100, 52, 188, 190, 21, 125, 218, 31, 18, 253, 241, 160, 133, 57, 242, 3, 164, 189, 68, 111, 75], [112, 204, 182, 90, 220, 198, 120, 73, 173, 107, 193, 17, 227, 40, 162, 36, 150, 141, 235, 55, 172, 183, 12, 39, 194, 136, 43, 153, 244, 118, 91, 89], [111, 24, 203, 123, 254, 189, 11, 162, 51, 196, 163, 136, 204, 143, 10, 222, 33, 112, 81, 205, 34, 35, 8, 66, 90, 6, 164, 58, 170, 177, 34, 25], [225, 183, 30, 52, 236, 82, 6, 183, 109, 25, 227, 181, 25, 82, 41, 193, 80, 77, 161, 80, 242, 203, 79, 204, 136, 245, 131, 110, 237, 106, 3, 58], [207, 246, 38, 56, 30, 86, 176, 90, 27, 200, 61, 42, 221, 27, 56, 210, 79, 178, 189, 120, 68, 193, 120, 167, 77, 185, 53, 197, 124, 128, 191, 126], [1, 136, 215, 80, 240, 46, 63, 147, 16, 244, 230, 207, 82, 189, 74, 50, 106, 169, 138, 86, 30, 131, 214, 202, 166, 125, 251, 228, 98, 24, 36, 21], [210, 207, 228, 56, 155, 116, 207, 54, 84, 195, 251, 215, 249, 199, 116, 75, 109, 239, 196, 251, 194, 246, 252, 228, 70, 146, 156, 35, 25, 39, 241, 4], [34, 116, 123, 9, 8, 40, 93, 189, 9, 103, 57, 103, 66, 227, 3, 2, 157, 107, 134, 219, 202, 74, 230, 154, 78, 107, 219, 195, 214, 14, 84, 80], ]; let encoded_images: [CompressedRistretto; 16] = [ CompressedRistretto([176, 157, 237, 97, 66, 29, 140, 166, 168, 94, 26, 157, 212, 216, 229, 160, 195, 246, 232, 239, 169, 112, 63, 193, 64, 32, 152, 69, 11, 190, 246, 86]), CompressedRistretto([234, 141, 77, 203, 181, 225, 250, 74, 171, 62, 15, 118, 78, 212, 150, 19, 131, 14, 188, 238, 194, 244, 141, 138, 166, 162, 83, 122, 228, 201, 19, 26]), CompressedRistretto([232, 231, 51, 92, 5, 168, 80, 36, 173, 179, 104, 68, 186, 149, 68, 40, 140, 170, 27, 103, 99, 140, 21, 242, 43, 62, 250, 134, 208, 255, 61, 89]), CompressedRistretto([208, 120, 140, 129, 177, 179, 237, 159, 252, 160, 28, 13, 206, 5, 211, 241, 192, 218, 1, 97, 130, 241, 20, 169, 119, 46, 246, 29, 79, 80, 77, 84]), CompressedRistretto([202, 11, 236, 145, 58, 12, 181, 157, 209, 6, 213, 88, 75, 147, 11, 119, 191, 139, 47, 142, 33, 36, 153, 193, 223, 183, 178, 8, 205, 120, 248, 110]), CompressedRistretto([26, 66, 231, 67, 203, 175, 116, 130, 32, 136, 62, 253, 215, 46, 5, 214, 166, 248, 108, 237, 216, 71, 244, 173, 72, 133, 82, 6, 143, 240, 104, 41]), CompressedRistretto([40, 157, 102, 96, 201, 223, 200, 197, 150, 181, 106, 83, 103, 126, 143, 33, 145, 230, 78, 6, 171, 146, 210, 143, 112, 5, 245, 23, 183, 138, 18, 120]), CompressedRistretto([220, 37, 27, 203, 239, 196, 176, 131, 37, 66, 188, 243, 185, 250, 113, 23, 167, 211, 154, 243, 168, 215, 54, 171, 159, 36, 195, 81, 13, 150, 43, 43]), CompressedRistretto([232, 121, 176, 222, 183, 196, 159, 90, 238, 193, 105, 52, 101, 167, 244, 170, 121, 114, 196, 6, 67, 152, 80, 185, 221, 7, 83, 105, 176, 208, 224, 121]), CompressedRistretto([226, 181, 183, 52, 241, 163, 61, 179, 221, 207, 220, 73, 245, 242, 25, 236, 67, 84, 179, 222, 167, 62, 167, 182, 32, 9, 92, 30, 165, 127, 204, 68]), CompressedRistretto([226, 119, 16, 242, 200, 139, 240, 87, 11, 222, 92, 146, 156, 243, 46, 119, 65, 59, 1, 248, 92, 183, 50, 175, 87, 40, 206, 53, 208, 220, 148, 13]), CompressedRistretto([70, 240, 79, 112, 54, 157, 228, 146, 74, 122, 216, 88, 232, 62, 158, 13, 14, 146, 115, 117, 176, 222, 90, 225, 244, 23, 94, 190, 150, 7, 136, 96]), CompressedRistretto([22, 71, 241, 103, 45, 193, 195, 144, 183, 101, 154, 50, 39, 68, 49, 110, 51, 44, 62, 0, 229, 113, 72, 81, 168, 29, 73, 106, 102, 40, 132, 24]), CompressedRistretto([196, 133, 107, 11, 130, 105, 74, 33, 204, 171, 133, 221, 174, 193, 241, 36, 38, 179, 196, 107, 219, 185, 181, 253, 228, 47, 155, 42, 231, 73, 41, 78]), CompressedRistretto([58, 255, 225, 197, 115, 208, 160, 143, 39, 197, 82, 69, 143, 235, 92, 170, 74, 40, 57, 11, 171, 227, 26, 185, 217, 207, 90, 185, 197, 190, 35, 60]), CompressedRistretto([88, 43, 92, 118, 223, 136, 105, 145, 238, 186, 115, 8, 214, 112, 153, 253, 38, 108, 205, 230, 157, 130, 11, 66, 101, 85, 253, 110, 110, 14, 148, 112]), ]; for i in 0..16 { let r_0 = FieldElement::from_bytes(&bytes[i]); let Q = RistrettoPoint::elligator_ristretto_flavor(&r_0); assert_eq!(Q.compress(), encoded_images[i]); } } #[test] fn random_roundtrip() { let mut rng = OsRng; let B = &constants::RISTRETTO_BASEPOINT_TABLE; for _ in 0..100 { let P = B * &Scalar::random(&mut rng); let compressed_P = P.compress(); let Q = compressed_P.decompress().unwrap(); assert_eq!(P, Q); } } #[test] fn double_and_compress_1024_random_points() { let mut rng = OsRng; let points: Vec = (0..1024).map(|_| RistrettoPoint::random(&mut rng)).collect(); let compressed = RistrettoPoint::double_and_compress_batch(&points); for (P, P2_compressed) in points.iter().zip(compressed.iter()) { assert_eq!(*P2_compressed, (P + P).compress()); } } #[test] fn vartime_precomputed_vs_nonprecomputed_multiscalar() { let mut rng = rand::thread_rng(); let B = &::constants::RISTRETTO_BASEPOINT_TABLE; let static_scalars = (0..128) .map(|_| Scalar::random(&mut rng)) .collect::>(); let dynamic_scalars = (0..128) .map(|_| Scalar::random(&mut rng)) .collect::>(); let check_scalar: Scalar = static_scalars .iter() .chain(dynamic_scalars.iter()) .map(|s| s * s) .sum(); let static_points = static_scalars.iter().map(|s| s * B).collect::>(); let dynamic_points = dynamic_scalars.iter().map(|s| s * B).collect::>(); let precomputation = VartimeRistrettoPrecomputation::new(static_points.iter()); let P = precomputation.vartime_mixed_multiscalar_mul( &static_scalars, &dynamic_scalars, &dynamic_points, ); use traits::VartimeMultiscalarMul; let Q = RistrettoPoint::vartime_multiscalar_mul( static_scalars.iter().chain(dynamic_scalars.iter()), static_points.iter().chain(dynamic_points.iter()), ); let R = &check_scalar * B; assert_eq!(P.compress(), R.compress()); assert_eq!(Q.compress(), R.compress()); } }