mystuff/net/gurk-rs/files/vendor/curve25519-dalek-2.0.0/src/backend/vector/avx2/field.rs

986 lines
38 KiB
Rust

// -*- mode: rust; coding: utf-8; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! An implementation of 4-way vectorized 32bit field arithmetic using
//! AVX2.
//!
//! The `FieldElement2625x4` struct provides a vector of four field
//! elements, implemented using AVX2 operations. Its API is designed
//! to abstract away the platform-dependent details, so that point
//! arithmetic can be implemented only in terms of a vector of field
//! elements.
//!
//! At this level, the API is optimized for speed and not safety. The
//! `FieldElement2625x4` does not always perform reductions. The pre-
//! and post-conditions on the bounds of the coefficients are
//! documented for each method, but it is the caller's responsibility
//! to ensure that there are no overflows.
#![allow(non_snake_case)]
const A_LANES: u8 = 0b0000_0101;
const B_LANES: u8 = 0b0000_1010;
const C_LANES: u8 = 0b0101_0000;
const D_LANES: u8 = 0b1010_0000;
#[allow(unused)]
const A_LANES64: u8 = 0b00_00_00_11;
#[allow(unused)]
const B_LANES64: u8 = 0b00_00_11_00;
#[allow(unused)]
const C_LANES64: u8 = 0b00_11_00_00;
#[allow(unused)]
const D_LANES64: u8 = 0b11_00_00_00;
use core::ops::{Add, Mul, Neg};
use packed_simd::{i32x8, u32x8, u64x4, IntoBits};
use backend::vector::avx2::constants::{P_TIMES_16_HI, P_TIMES_16_LO, P_TIMES_2_HI, P_TIMES_2_LO};
use backend::serial::u64::field::FieldElement51;
/// Unpack 32-bit lanes into 64-bit lanes:
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
/// into
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
#[inline(always)]
fn unpack_pair(src: u32x8) -> (u32x8, u32x8) {
let a: u32x8;
let b: u32x8;
let zero = i32x8::new(0, 0, 0, 0, 0, 0, 0, 0);
unsafe {
use core::arch::x86_64::_mm256_unpackhi_epi32;
use core::arch::x86_64::_mm256_unpacklo_epi32;
a = _mm256_unpacklo_epi32(src.into_bits(), zero.into_bits()).into_bits();
b = _mm256_unpackhi_epi32(src.into_bits(), zero.into_bits()).into_bits();
}
(a, b)
}
/// Repack 64-bit lanes into 32-bit lanes:
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
/// into
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
#[inline(always)]
fn repack_pair(x: u32x8, y: u32x8) -> u32x8 {
unsafe {
use core::arch::x86_64::_mm256_blend_epi32;
use core::arch::x86_64::_mm256_shuffle_epi32;
// Input: x = (a0, 0, b0, 0, c0, 0, d0, 0)
// Input: y = (a1, 0, b1, 0, c1, 0, d1, 0)
let x_shuffled = _mm256_shuffle_epi32(x.into_bits(), 0b11_01_10_00);
let y_shuffled = _mm256_shuffle_epi32(y.into_bits(), 0b10_00_11_01);
// x' = (a0, b0, 0, 0, c0, d0, 0, 0)
// y' = ( 0, 0, a1, b1, 0, 0, c1, d1)
return _mm256_blend_epi32(x_shuffled, y_shuffled, 0b11001100).into_bits();
}
}
/// The `Lanes` enum represents a subset of the lanes `A,B,C,D` of a
/// `FieldElement2625x4`.
///
/// It's used to specify blend operations without
/// having to know details about the data layout of the
/// `FieldElement2625x4`.
#[derive(Copy, Clone, Debug)]
pub enum Lanes {
C,
D,
AB,
AC,
CD,
AD,
BC,
ABCD,
}
/// The `Shuffle` enum represents a shuffle of a `FieldElement2625x4`.
///
/// The enum variants are named by what they do to a vector \\(
/// (A,B,C,D) \\); for instance, `Shuffle::BADC` turns \\( (A, B, C,
/// D) \\) into \\( (B, A, D, C) \\).
#[derive(Copy, Clone, Debug)]
pub enum Shuffle {
AAAA,
BBBB,
CACA,
DBBD,
ADDA,
CBCB,
ABAB,
BADC,
BACD,
ABDC,
}
/// A vector of four field elements.
///
/// Each operation on a `FieldElement2625x4` has documented effects on
/// the bounds of the coefficients. This API is designed for speed
/// and not safety; it is the caller's responsibility to ensure that
/// the post-conditions of one operation are compatible with the
/// pre-conditions of the next.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement2625x4(pub(crate) [u32x8; 5]);
use subtle::Choice;
use subtle::ConditionallySelectable;
impl ConditionallySelectable for FieldElement2625x4 {
fn conditional_select(
a: &FieldElement2625x4,
b: &FieldElement2625x4,
choice: Choice,
) -> FieldElement2625x4 {
let mask = (-(choice.unwrap_u8() as i32)) as u32;
let mask_vec = u32x8::splat(mask);
FieldElement2625x4([
a.0[0] ^ (mask_vec & (a.0[0] ^ b.0[0])),
a.0[1] ^ (mask_vec & (a.0[1] ^ b.0[1])),
a.0[2] ^ (mask_vec & (a.0[2] ^ b.0[2])),
a.0[3] ^ (mask_vec & (a.0[3] ^ b.0[3])),
a.0[4] ^ (mask_vec & (a.0[4] ^ b.0[4])),
])
}
fn conditional_assign(
&mut self,
other: &FieldElement2625x4,
choice: Choice,
) {
let mask = (-(choice.unwrap_u8() as i32)) as u32;
let mask_vec = u32x8::splat(mask);
self.0[0] ^= mask_vec & (self.0[0] ^ other.0[0]);
self.0[1] ^= mask_vec & (self.0[1] ^ other.0[1]);
self.0[2] ^= mask_vec & (self.0[2] ^ other.0[2]);
self.0[3] ^= mask_vec & (self.0[3] ^ other.0[3]);
self.0[4] ^= mask_vec & (self.0[4] ^ other.0[4]);
}
}
impl FieldElement2625x4 {
/// Split this vector into an array of four (serial) field
/// elements.
pub fn split(&self) -> [FieldElement51; 4] {
let mut out = [FieldElement51::zero(); 4];
for i in 0..5 {
let a_2i = self.0[i].extract(0) as u64; //
let b_2i = self.0[i].extract(1) as u64; //
let a_2i_1 = self.0[i].extract(2) as u64; // `.
let b_2i_1 = self.0[i].extract(3) as u64; // | pre-swapped to avoid
let c_2i = self.0[i].extract(4) as u64; // | a cross lane shuffle
let d_2i = self.0[i].extract(5) as u64; // .'
let c_2i_1 = self.0[i].extract(6) as u64; //
let d_2i_1 = self.0[i].extract(7) as u64; //
out[0].0[i] = a_2i + (a_2i_1 << 26);
out[1].0[i] = b_2i + (b_2i_1 << 26);
out[2].0[i] = c_2i + (c_2i_1 << 26);
out[3].0[i] = d_2i + (d_2i_1 << 26);
}
out
}
/// Rearrange the elements of this vector according to `control`.
///
/// The `control` parameter should be a compile-time constant, so
/// that when this function is inlined, LLVM is able to lower the
/// shuffle using an immediate.
#[inline]
pub fn shuffle(&self, control: Shuffle) -> FieldElement2625x4 {
#[inline(always)]
fn shuffle_lanes(x: u32x8, control: Shuffle) -> u32x8 {
unsafe {
use core::arch::x86_64::_mm256_permutevar8x32_epi32;
let c: u32x8 = match control {
Shuffle::AAAA => u32x8::new(0, 0, 2, 2, 0, 0, 2, 2),
Shuffle::BBBB => u32x8::new(1, 1, 3, 3, 1, 1, 3, 3),
Shuffle::CACA => u32x8::new(4, 0, 6, 2, 4, 0, 6, 2),
Shuffle::DBBD => u32x8::new(5, 1, 7, 3, 1, 5, 3, 7),
Shuffle::ADDA => u32x8::new(0, 5, 2, 7, 5, 0, 7, 2),
Shuffle::CBCB => u32x8::new(4, 1, 6, 3, 4, 1, 6, 3),
Shuffle::ABAB => u32x8::new(0, 1, 2, 3, 0, 1, 2, 3),
Shuffle::BADC => u32x8::new(1, 0, 3, 2, 5, 4, 7, 6),
Shuffle::BACD => u32x8::new(1, 0, 3, 2, 4, 5, 6, 7),
Shuffle::ABDC => u32x8::new(0, 1, 2, 3, 5, 4, 7, 6),
};
// Note that this gets turned into a generic LLVM
// shuffle-by-constants, which can be lowered to a simpler
// instruction than a generic permute.
_mm256_permutevar8x32_epi32(x.into_bits(), c.into_bits()).into_bits()
}
}
FieldElement2625x4([
shuffle_lanes(self.0[0], control),
shuffle_lanes(self.0[1], control),
shuffle_lanes(self.0[2], control),
shuffle_lanes(self.0[3], control),
shuffle_lanes(self.0[4], control),
])
}
/// Blend `self` with `other`, taking lanes specified in `control` from `other`.
///
/// The `control` parameter should be a compile-time constant, so
/// that this function can be inlined and LLVM can lower it to a
/// blend instruction using an immediate.
#[inline]
pub fn blend(&self, other: FieldElement2625x4, control: Lanes) -> FieldElement2625x4 {
#[inline(always)]
fn blend_lanes(x: u32x8, y: u32x8, control: Lanes) -> u32x8 {
unsafe {
use core::arch::x86_64::_mm256_blend_epi32;
// This would be much cleaner if we could factor out the match
// statement on the control. Unfortunately, rustc forgets
// constant-info very quickly, so we can't even write
// ```
// match control {
// Lanes::C => {
// let imm = C_LANES as i32;
// _mm256_blend_epi32(..., imm)
// ```
// let alone
// ```
// let imm = match control {
// Lanes::C => C_LANES as i32,
// }
// _mm256_blend_epi32(..., imm)
// ```
// even though both of these would be constant-folded by LLVM
// at a lower level (as happens in the shuffle implementation,
// which does not require a shuffle immediate but *is* lowered
// to immediate shuffles anyways).
match control {
Lanes::C => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), C_LANES as i32).into_bits()
}
Lanes::D => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), D_LANES as i32).into_bits()
}
Lanes::AD => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | D_LANES) as i32)
.into_bits()
}
Lanes::AB => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | B_LANES) as i32)
.into_bits()
}
Lanes::AC => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | C_LANES) as i32)
.into_bits()
}
Lanes::CD => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), (C_LANES | D_LANES) as i32)
.into_bits()
}
Lanes::BC => {
_mm256_blend_epi32(x.into_bits(), y.into_bits(), (B_LANES | C_LANES) as i32)
.into_bits()
}
Lanes::ABCD => _mm256_blend_epi32(
x.into_bits(),
y.into_bits(),
(A_LANES | B_LANES | C_LANES | D_LANES) as i32,
).into_bits(),
}
}
}
FieldElement2625x4([
blend_lanes(self.0[0], other.0[0], control),
blend_lanes(self.0[1], other.0[1], control),
blend_lanes(self.0[2], other.0[2], control),
blend_lanes(self.0[3], other.0[3], control),
blend_lanes(self.0[4], other.0[4], control),
])
}
/// Construct a vector of zeros.
pub fn zero() -> FieldElement2625x4 {
FieldElement2625x4([u32x8::splat(0); 5])
}
/// Convenience wrapper around `new(x,x,x,x)`.
pub fn splat(x: &FieldElement51) -> FieldElement2625x4 {
FieldElement2625x4::new(x, x, x, x)
}
/// Create a `FieldElement2625x4` from four `FieldElement51`s.
///
/// # Postconditions
///
/// The resulting `FieldElement2625x4` is bounded with \\( b < 0.0002 \\).
pub fn new(
x0: &FieldElement51,
x1: &FieldElement51,
x2: &FieldElement51,
x3: &FieldElement51,
) -> FieldElement2625x4 {
let mut buf = [u32x8::splat(0); 5];
let low_26_bits = (1 << 26) - 1;
for i in 0..5 {
let a_2i = (x0.0[i] & low_26_bits) as u32;
let a_2i_1 = (x0.0[i] >> 26) as u32;
let b_2i = (x1.0[i] & low_26_bits) as u32;
let b_2i_1 = (x1.0[i] >> 26) as u32;
let c_2i = (x2.0[i] & low_26_bits) as u32;
let c_2i_1 = (x2.0[i] >> 26) as u32;
let d_2i = (x3.0[i] & low_26_bits) as u32;
let d_2i_1 = (x3.0[i] >> 26) as u32;
buf[i] = u32x8::new(a_2i, b_2i, a_2i_1, b_2i_1, c_2i, d_2i, c_2i_1, d_2i_1);
}
// We don't know that the original `FieldElement51`s were
// fully reduced, so the odd limbs may exceed 2^25.
// Reduce them to be sure.
FieldElement2625x4(buf).reduce()
}
/// Given \\((A,B,C,D)\\), compute \\((-A,-B,-C,-D)\\), without
/// performing a reduction.
///
/// # Preconditions
///
/// The coefficients of `self` must be bounded with \\( b < 0.999 \\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 1 \\).
#[inline]
pub fn negate_lazy(&self) -> FieldElement2625x4 {
// The limbs of self are bounded with b < 0.999, while the
// smallest limb of 2*p is 67108845 > 2^{26+0.9999}, so
// underflows are not possible.
FieldElement2625x4([
P_TIMES_2_LO - self.0[0],
P_TIMES_2_HI - self.0[1],
P_TIMES_2_HI - self.0[2],
P_TIMES_2_HI - self.0[3],
P_TIMES_2_HI - self.0[4],
])
}
/// Given `self = (A,B,C,D)`, compute `(B - A, B + A, D - C, D + C)`.
///
/// # Preconditions
///
/// The coefficients of `self` must be bounded with \\( b < 0.01 \\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 1.6 \\).
#[inline]
pub fn diff_sum(&self) -> FieldElement2625x4 {
// tmp1 = (B, A, D, C)
let tmp1 = self.shuffle(Shuffle::BADC);
// tmp2 = (-A, B, -C, D)
let tmp2 = self.blend(self.negate_lazy(), Lanes::AC);
// (B - A, B + A, D - C, D + C) bounded with b < 1.6
tmp1 + tmp2
}
/// Reduce this vector of field elements \\(\mathrm{mod} p\\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.0002 \\).
#[inline]
pub fn reduce(&self) -> FieldElement2625x4 {
let shifts = i32x8::new(26, 26, 25, 25, 26, 26, 25, 25);
let masks = u32x8::new(
(1 << 26) - 1,
(1 << 26) - 1,
(1 << 25) - 1,
(1 << 25) - 1,
(1 << 26) - 1,
(1 << 26) - 1,
(1 << 25) - 1,
(1 << 25) - 1,
);
// Let c(x) denote the carryout of the coefficient x.
//
// Given ( x0, y0, x1, y1, z0, w0, z1, w1),
// compute (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0)).
//
// The carryouts are bounded by 2^(32 - 25) = 2^7.
let rotated_carryout = |v: u32x8| -> u32x8 {
unsafe {
use core::arch::x86_64::_mm256_srlv_epi32;
use core::arch::x86_64::_mm256_shuffle_epi32;
let c = _mm256_srlv_epi32(v.into_bits(), shifts.into_bits());
_mm256_shuffle_epi32(c, 0b01_00_11_10).into_bits()
}
};
// Combine (lo, lo, lo, lo, lo, lo, lo, lo)
// with (hi, hi, hi, hi, hi, hi, hi, hi)
// to (lo, lo, hi, hi, lo, lo, hi, hi)
//
// This allows combining carryouts, e.g.,
//
// lo (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0))
// hi (c(x3), c(y3), c(x2), c(y2), c(z3), c(w3), c(z2), c(w2))
// -> (c(x1), c(y1), c(x2), c(y2), c(z1), c(w1), c(z2), c(w2))
//
// which is exactly the vector of carryins for
//
// ( x2, y2, x3, y3, z2, w2, z3, w3).
//
let combine = |v_lo: u32x8, v_hi: u32x8| -> u32x8 {
unsafe {
use core::arch::x86_64::_mm256_blend_epi32;
_mm256_blend_epi32(v_lo.into_bits(), v_hi.into_bits(), 0b11_00_11_00).into_bits()
}
};
let mut v = self.0;
let c10 = rotated_carryout(v[0]);
v[0] = (v[0] & masks) + combine(u32x8::splat(0), c10);
let c32 = rotated_carryout(v[1]);
v[1] = (v[1] & masks) + combine(c10, c32);
let c54 = rotated_carryout(v[2]);
v[2] = (v[2] & masks) + combine(c32, c54);
let c76 = rotated_carryout(v[3]);
v[3] = (v[3] & masks) + combine(c54, c76);
let c98 = rotated_carryout(v[4]);
v[4] = (v[4] & masks) + combine(c76, c98);
let c9_19: u32x8 = unsafe {
use core::arch::x86_64::_mm256_mul_epu32;
use core::arch::x86_64::_mm256_shuffle_epi32;
// Need to rearrange c98, since vpmuludq uses the low
// 32-bits of each 64-bit lane to compute the product:
//
// c98 = (c(x9), c(y9), c(x8), c(y8), c(z9), c(w9), c(z8), c(w8));
// c9_spread = (c(x9), c(x8), c(y9), c(y8), c(z9), c(z8), c(w9), c(w8)).
let c9_spread = _mm256_shuffle_epi32(c98.into_bits(), 0b11_01_10_00);
// Since the carryouts are bounded by 2^7, their products with 19
// are bounded by 2^11.25. This means that
//
// c9_19_spread = (19*c(x9), 0, 19*c(y9), 0, 19*c(z9), 0, 19*c(w9), 0).
let c9_19_spread = _mm256_mul_epu32(c9_spread, u64x4::splat(19).into_bits());
// Unshuffle:
// c9_19 = (19*c(x9), 19*c(y9), 0, 0, 19*c(z9), 19*c(w9), 0, 0).
_mm256_shuffle_epi32(c9_19_spread, 0b11_01_10_00).into_bits()
};
// Add the final carryin.
v[0] = v[0] + c9_19;
// Each output coefficient has exactly one carryin, which is
// bounded by 2^11.25, so they are bounded as
//
// c_even < 2^26 + 2^11.25 < 26.00006 < 2^{26+b}
// c_odd < 2^25 + 2^11.25 < 25.0001 < 2^{25+b}
//
// where b = 0.0002.
FieldElement2625x4(v)
}
/// Given an array of wide coefficients, reduce them to a `FieldElement2625x4`.
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.007 \\).
#[inline]
fn reduce64(mut z: [u64x4; 10]) -> FieldElement2625x4 {
// These aren't const because splat isn't a const fn
let LOW_25_BITS: u64x4 = u64x4::splat((1 << 25) - 1);
let LOW_26_BITS: u64x4 = u64x4::splat((1 << 26) - 1);
// Carry the value from limb i = 0..8 to limb i+1
let carry = |z: &mut [u64x4; 10], i: usize| {
debug_assert!(i < 9);
if i % 2 == 0 {
// Even limbs have 26 bits
z[i + 1] = z[i + 1] + (z[i] >> 26);
z[i] = z[i] & LOW_26_BITS;
} else {
// Odd limbs have 25 bits
z[i + 1] = z[i + 1] + (z[i] >> 25);
z[i] = z[i] & LOW_25_BITS;
}
};
// Perform two halves of the carry chain in parallel.
carry(&mut z, 0); carry(&mut z, 4);
carry(&mut z, 1); carry(&mut z, 5);
carry(&mut z, 2); carry(&mut z, 6);
carry(&mut z, 3); carry(&mut z, 7);
// Since z[3] < 2^64, c < 2^(64-25) = 2^39,
// so z[4] < 2^26 + 2^39 < 2^39.0002
carry(&mut z, 4); carry(&mut z, 8);
// Now z[4] < 2^26
// and z[5] < 2^25 + 2^13.0002 < 2^25.0004 (good enough)
// Last carry has a multiplication by 19. In the serial case we
// do a 64-bit multiplication by 19, but here we want to do a
// 32-bit multiplication. However, if we only know z[9] < 2^64,
// the carry is bounded as c < 2^(64-25) = 2^39, which is too
// big. To ensure c < 2^32, we would need z[9] < 2^57.
// Instead, we split the carry in two, with c = c_0 + c_1*2^26.
let c = z[9] >> 25;
z[9] = z[9] & LOW_25_BITS;
let mut c0: u64x4 = c & LOW_26_BITS; // c0 < 2^26;
let mut c1: u64x4 = c >> 26; // c1 < 2^(39-26) = 2^13;
unsafe {
use core::arch::x86_64::_mm256_mul_epu32;
let x19 = u64x4::splat(19);
c0 = _mm256_mul_epu32(c0.into_bits(), x19.into_bits()).into_bits(); // c0 < 2^30.25
c1 = _mm256_mul_epu32(c1.into_bits(), x19.into_bits()).into_bits(); // c1 < 2^17.25
}
z[0] = z[0] + c0; // z0 < 2^26 + 2^30.25 < 2^30.33
z[1] = z[1] + c1; // z1 < 2^25 + 2^17.25 < 2^25.0067
carry(&mut z, 0); // z0 < 2^26, z1 < 2^25.0067 + 2^4.33 = 2^25.007
// The output coefficients are bounded with
//
// b = 0.007 for z[1]
// b = 0.0004 for z[5]
// b = 0 for other z[i].
//
// So the packed result is bounded with b = 0.007.
FieldElement2625x4([
repack_pair(z[0].into_bits(), z[1].into_bits()),
repack_pair(z[2].into_bits(), z[3].into_bits()),
repack_pair(z[4].into_bits(), z[5].into_bits()),
repack_pair(z[6].into_bits(), z[7].into_bits()),
repack_pair(z[8].into_bits(), z[9].into_bits()),
])
}
/// Square this field element, and negate the result's \\(D\\) value.
///
/// # Preconditions
///
/// The coefficients of `self` must be bounded with \\( b < 1.5 \\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.007 \\).
pub fn square_and_negate_D(&self) -> FieldElement2625x4 {
#[inline(always)]
fn m(x: u32x8, y: u32x8) -> u64x4 {
use core::arch::x86_64::_mm256_mul_epu32;
unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() }
}
#[inline(always)]
fn m_lo(x: u32x8, y: u32x8) -> u32x8 {
use core::arch::x86_64::_mm256_mul_epu32;
unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() }
}
let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0);
let (x0, x1) = unpack_pair(self.0[0]);
let (x2, x3) = unpack_pair(self.0[1]);
let (x4, x5) = unpack_pair(self.0[2]);
let (x6, x7) = unpack_pair(self.0[3]);
let (x8, x9) = unpack_pair(self.0[4]);
let x0_2 = x0 << 1;
let x1_2 = x1 << 1;
let x2_2 = x2 << 1;
let x3_2 = x3 << 1;
let x4_2 = x4 << 1;
let x5_2 = x5 << 1;
let x6_2 = x6 << 1;
let x7_2 = x7 << 1;
let x5_19 = m_lo(v19, x5);
let x6_19 = m_lo(v19, x6);
let x7_19 = m_lo(v19, x7);
let x8_19 = m_lo(v19, x8);
let x9_19 = m_lo(v19, x9);
let mut z0 = m(x0, x0) + m(x2_2,x8_19) + m(x4_2,x6_19) + ((m(x1_2,x9_19) + m(x3_2,x7_19) + m(x5,x5_19)) << 1);
let mut z1 = m(x0_2,x1) + m(x3_2,x8_19) + m(x5_2,x6_19) + ((m(x2,x9_19) + m(x4,x7_19)) << 1);
let mut z2 = m(x0_2,x2) + m(x1_2,x1) + m(x4_2,x8_19) + m(x6,x6_19) + ((m(x3_2,x9_19) + m(x5_2,x7_19)) << 1);
let mut z3 = m(x0_2,x3) + m(x1_2,x2) + m(x5_2,x8_19) + ((m(x4,x9_19) + m(x6,x7_19)) << 1);
let mut z4 = m(x0_2,x4) + m(x1_2,x3_2) + m(x2, x2) + m(x6_2,x8_19) + ((m(x5_2,x9_19) + m(x7,x7_19)) << 1);
let mut z5 = m(x0_2,x5) + m(x1_2,x4) + m(x2_2,x3) + m(x7_2,x8_19) + ((m(x6,x9_19)) << 1);
let mut z6 = m(x0_2,x6) + m(x1_2,x5_2) + m(x2_2,x4) + m(x3_2,x3) + m(x8,x8_19) + ((m(x7_2,x9_19)) << 1);
let mut z7 = m(x0_2,x7) + m(x1_2,x6) + m(x2_2,x5) + m(x3_2,x4) + ((m(x8,x9_19)) << 1);
let mut z8 = m(x0_2,x8) + m(x1_2,x7_2) + m(x2_2,x6) + m(x3_2,x5_2) + m(x4,x4) + ((m(x9,x9_19)) << 1);
let mut z9 = m(x0_2,x9) + m(x1_2,x8) + m(x2_2,x7) + m(x3_2,x6) + m(x4_2,x5);
// The biggest z_i is bounded as z_i < 249*2^(51 + 2*b);
// if b < 1.5 we get z_i < 4485585228861014016.
//
// The limbs of the multiples of p are bounded above by
//
// 0x3fffffff << 37 = 9223371899415822336 < 2^63
//
// and below by
//
// 0x1fffffff << 37 = 4611685880988434432
// > 4485585228861014016
//
// So these multiples of p are big enough to avoid underflow
// in subtraction, and small enough to fit within u64
// with room for a carry.
let low__p37 = u64x4::splat(0x3ffffed << 37);
let even_p37 = u64x4::splat(0x3ffffff << 37);
let odd__p37 = u64x4::splat(0x1ffffff << 37);
let negate_D = |x: u64x4, p: u64x4| -> u64x4 {
unsafe {
use core::arch::x86_64::_mm256_blend_epi32;
_mm256_blend_epi32(x.into_bits(), (p - x).into_bits(), D_LANES64 as i32).into_bits()
}
};
z0 = negate_D(z0, low__p37);
z1 = negate_D(z1, odd__p37);
z2 = negate_D(z2, even_p37);
z3 = negate_D(z3, odd__p37);
z4 = negate_D(z4, even_p37);
z5 = negate_D(z5, odd__p37);
z6 = negate_D(z6, even_p37);
z7 = negate_D(z7, odd__p37);
z8 = negate_D(z8, even_p37);
z9 = negate_D(z9, odd__p37);
FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
}
}
impl Neg for FieldElement2625x4 {
type Output = FieldElement2625x4;
/// Negate this field element, performing a reduction.
///
/// If the coefficients are known to be small, use `negate_lazy`
/// to avoid performing a reduction.
///
/// # Preconditions
///
/// The coefficients of `self` must be bounded with \\( b < 4.0 \\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.0002 \\).
#[inline]
fn neg(self) -> FieldElement2625x4 {
FieldElement2625x4([
P_TIMES_16_LO - self.0[0],
P_TIMES_16_HI - self.0[1],
P_TIMES_16_HI - self.0[2],
P_TIMES_16_HI - self.0[3],
P_TIMES_16_HI - self.0[4],
]).reduce()
}
}
impl Add<FieldElement2625x4> for FieldElement2625x4 {
type Output = FieldElement2625x4;
/// Add two `FieldElement2625x4`s, without performing a reduction.
#[inline]
fn add(self, rhs: FieldElement2625x4) -> FieldElement2625x4 {
FieldElement2625x4([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
self.0[3] + rhs.0[3],
self.0[4] + rhs.0[4],
])
}
}
impl Mul<(u32, u32, u32, u32)> for FieldElement2625x4 {
type Output = FieldElement2625x4;
/// Perform a multiplication by a vector of small constants.
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.007 \\).
#[inline]
fn mul(self, scalars: (u32, u32, u32, u32)) -> FieldElement2625x4 {
unsafe {
use core::arch::x86_64::_mm256_mul_epu32;
let consts = u32x8::new(scalars.0, 0, scalars.1, 0, scalars.2, 0, scalars.3, 0);
let (b0, b1) = unpack_pair(self.0[0]);
let (b2, b3) = unpack_pair(self.0[1]);
let (b4, b5) = unpack_pair(self.0[2]);
let (b6, b7) = unpack_pair(self.0[3]);
let (b8, b9) = unpack_pair(self.0[4]);
FieldElement2625x4::reduce64([
_mm256_mul_epu32(b0.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b1.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b2.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b3.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b4.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b5.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b6.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b7.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b8.into_bits(), consts.into_bits()).into_bits(),
_mm256_mul_epu32(b9.into_bits(), consts.into_bits()).into_bits(),
])
}
}
}
impl<'a, 'b> Mul<&'b FieldElement2625x4> for &'a FieldElement2625x4 {
type Output = FieldElement2625x4;
/// Multiply `self` by `rhs`.
///
/// # Preconditions
///
/// The coefficients of `self` must be bounded with \\( b < 2.5 \\).
///
/// The coefficients of `rhs` must be bounded with \\( b < 1.75 \\).
///
/// # Postconditions
///
/// The coefficients of the result are bounded with \\( b < 0.007 \\).
///
fn mul(self, rhs: &'b FieldElement2625x4) -> FieldElement2625x4 {
#[inline(always)]
fn m(x: u32x8, y: u32x8) -> u64x4 {
use core::arch::x86_64::_mm256_mul_epu32;
unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() }
}
#[inline(always)]
fn m_lo(x: u32x8, y: u32x8) -> u32x8 {
use core::arch::x86_64::_mm256_mul_epu32;
unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() }
}
let (x0, x1) = unpack_pair(self.0[0]);
let (x2, x3) = unpack_pair(self.0[1]);
let (x4, x5) = unpack_pair(self.0[2]);
let (x6, x7) = unpack_pair(self.0[3]);
let (x8, x9) = unpack_pair(self.0[4]);
let (y0, y1) = unpack_pair(rhs.0[0]);
let (y2, y3) = unpack_pair(rhs.0[1]);
let (y4, y5) = unpack_pair(rhs.0[2]);
let (y6, y7) = unpack_pair(rhs.0[3]);
let (y8, y9) = unpack_pair(rhs.0[4]);
let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0);
let y1_19 = m_lo(v19, y1); // This fits in a u32
let y2_19 = m_lo(v19, y2); // iff 26 + b + lg(19) < 32
let y3_19 = m_lo(v19, y3); // if b < 32 - 26 - 4.248 = 1.752
let y4_19 = m_lo(v19, y4);
let y5_19 = m_lo(v19, y5);
let y6_19 = m_lo(v19, y6);
let y7_19 = m_lo(v19, y7);
let y8_19 = m_lo(v19, y8);
let y9_19 = m_lo(v19, y9);
let x1_2 = x1 + x1; // This fits in a u32 iff 25 + b + 1 < 32
let x3_2 = x3 + x3; // iff b < 6
let x5_2 = x5 + x5;
let x7_2 = x7 + x7;
let x9_2 = x9 + x9;
let z0 = m(x0,y0) + m(x1_2,y9_19) + m(x2,y8_19) + m(x3_2,y7_19) + m(x4,y6_19) + m(x5_2,y5_19) + m(x6,y4_19) + m(x7_2,y3_19) + m(x8,y2_19) + m(x9_2,y1_19);
let z1 = m(x0,y1) + m(x1,y0) + m(x2,y9_19) + m(x3,y8_19) + m(x4,y7_19) + m(x5,y6_19) + m(x6,y5_19) + m(x7,y4_19) + m(x8,y3_19) + m(x9,y2_19);
let z2 = m(x0,y2) + m(x1_2,y1) + m(x2,y0) + m(x3_2,y9_19) + m(x4,y8_19) + m(x5_2,y7_19) + m(x6,y6_19) + m(x7_2,y5_19) + m(x8,y4_19) + m(x9_2,y3_19);
let z3 = m(x0,y3) + m(x1,y2) + m(x2,y1) + m(x3,y0) + m(x4,y9_19) + m(x5,y8_19) + m(x6,y7_19) + m(x7,y6_19) + m(x8,y5_19) + m(x9,y4_19);
let z4 = m(x0,y4) + m(x1_2,y3) + m(x2,y2) + m(x3_2,y1) + m(x4,y0) + m(x5_2,y9_19) + m(x6,y8_19) + m(x7_2,y7_19) + m(x8,y6_19) + m(x9_2,y5_19);
let z5 = m(x0,y5) + m(x1,y4) + m(x2,y3) + m(x3,y2) + m(x4,y1) + m(x5,y0) + m(x6,y9_19) + m(x7,y8_19) + m(x8,y7_19) + m(x9,y6_19);
let z6 = m(x0,y6) + m(x1_2,y5) + m(x2,y4) + m(x3_2,y3) + m(x4,y2) + m(x5_2,y1) + m(x6,y0) + m(x7_2,y9_19) + m(x8,y8_19) + m(x9_2,y7_19);
let z7 = m(x0,y7) + m(x1,y6) + m(x2,y5) + m(x3,y4) + m(x4,y3) + m(x5,y2) + m(x6,y1) + m(x7,y0) + m(x8,y9_19) + m(x9,y8_19);
let z8 = m(x0,y8) + m(x1_2,y7) + m(x2,y6) + m(x3_2,y5) + m(x4,y4) + m(x5_2,y3) + m(x6,y2) + m(x7_2,y1) + m(x8,y0) + m(x9_2,y9_19);
let z9 = m(x0,y9) + m(x1,y8) + m(x2,y7) + m(x3,y6) + m(x4,y5) + m(x5,y4) + m(x6,y3) + m(x7,y2) + m(x8,y1) + m(x9,y0);
// The bounds on z[i] are the same as in the serial 32-bit code
// and the comment below is copied from there:
// How big is the contribution to z[i+j] from x[i], y[j]?
//
// Using the bounds above, we get:
//
// i even, j even: x[i]*y[j] < 2^(26+b)*2^(26+b) = 2*2^(51+2*b)
// i odd, j even: x[i]*y[j] < 2^(25+b)*2^(26+b) = 1*2^(51+2*b)
// i even, j odd: x[i]*y[j] < 2^(26+b)*2^(25+b) = 1*2^(51+2*b)
// i odd, j odd: 2*x[i]*y[j] < 2*2^(25+b)*2^(25+b) = 1*2^(51+2*b)
//
// We perform inline reduction mod p by replacing 2^255 by 19
// (since 2^255 - 19 = 0 mod p). This adds a factor of 19, so
// we get the bounds (z0 is the biggest one, but calculated for
// posterity here in case finer estimation is needed later):
//
// z0 < ( 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 249*2^(51 + 2*b)
// z1 < ( 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 154*2^(51 + 2*b)
// z2 < ( 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 195*2^(51 + 2*b)
// z3 < ( 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 118*2^(51 + 2*b)
// z4 < ( 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 141*2^(51 + 2*b)
// z5 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 82*2^(51 + 2*b)
// z6 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 87*2^(51 + 2*b)
// z7 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 )*2^(51 + 2b) = 46*2^(51 + 2*b)
// z8 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 )*2^(51 + 2b) = 33*2^(51 + 2*b)
// z9 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 )*2^(51 + 2b) = 10*2^(51 + 2*b)
//
// So z[0] fits into a u64 if 51 + 2*b + lg(249) < 64
// if b < 2.5.
// In fact this bound is slightly sloppy, since it treats both
// inputs x and y as being bounded by the same parameter b,
// while they are in fact bounded by b_x and b_y, and we
// already require that b_y < 1.75 in order to fit the
// multiplications by 19 into a u32. The tighter bound on b_y
// means we could get a tighter bound on the outputs, or a
// looser bound on b_x.
FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn scale_by_curve_constants() {
let mut x = FieldElement2625x4::splat(&FieldElement51::one());
x = x * (121666, 121666, 2*121666, 2*121665);
let xs = x.split();
assert_eq!(xs[0], FieldElement51([121666, 0, 0, 0, 0]));
assert_eq!(xs[1], FieldElement51([121666, 0, 0, 0, 0]));
assert_eq!(xs[2], FieldElement51([2 * 121666, 0, 0, 0, 0]));
assert_eq!(xs[3], FieldElement51([2 * 121665, 0, 0, 0, 0]));
}
#[test]
fn diff_sum_vs_serial() {
let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);
let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3).diff_sum();
let result = vec.split();
assert_eq!(result[0], &x1 - &x0);
assert_eq!(result[1], &x1 + &x0);
assert_eq!(result[2], &x3 - &x2);
assert_eq!(result[3], &x3 + &x2);
}
#[test]
fn square_vs_serial() {
let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);
let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);
let result = vec.square_and_negate_D().split();
assert_eq!(result[0], &x0 * &x0);
assert_eq!(result[1], &x1 * &x1);
assert_eq!(result[2], &x2 * &x2);
assert_eq!(result[3], -&(&x3 * &x3));
}
#[test]
fn multiply_vs_serial() {
let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]);
let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]);
let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]);
let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]);
let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);
let vecprime = vec.clone();
let result = (&vec * &vecprime).split();
assert_eq!(result[0], &x0 * &x0);
assert_eq!(result[1], &x1 * &x1);
assert_eq!(result[2], &x2 * &x2);
assert_eq!(result[3], &x3 * &x3);
}
#[test]
fn test_unpack_repack_pair() {
let x0 = FieldElement51([10000 + (10001 << 26), 0, 0, 0, 0]);
let x1 = FieldElement51([10100 + (10101 << 26), 0, 0, 0, 0]);
let x2 = FieldElement51([10200 + (10201 << 26), 0, 0, 0, 0]);
let x3 = FieldElement51([10300 + (10301 << 26), 0, 0, 0, 0]);
let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);
let src = vec.0[0];
let (a, b) = unpack_pair(src);
let expected_a = u32x8::new(10000, 0, 10100, 0, 10200, 0, 10300, 0);
let expected_b = u32x8::new(10001, 0, 10101, 0, 10201, 0, 10301, 0);
assert_eq!(a, expected_a);
assert_eq!(b, expected_b);
let expected_src = repack_pair(a, b);
assert_eq!(src, expected_src);
}
#[test]
fn new_split_roundtrips() {
let x0 = FieldElement51::from_bytes(&[0x10; 32]);
let x1 = FieldElement51::from_bytes(&[0x11; 32]);
let x2 = FieldElement51::from_bytes(&[0x12; 32]);
let x3 = FieldElement51::from_bytes(&[0x13; 32]);
let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3);
let splits = vec.split();
assert_eq!(x0, splits[0]);
assert_eq!(x1, splits[1]);
assert_eq!(x2, splits[2]);
assert_eq!(x3, splits[3]);
}
}