mystuff/net/gurk-rs/files/vendor/curve25519-dalek-2.0.0/src/scalar.rs

1740 lines
59 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence
// Portions Copyright 2017 Brian Smith
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
// - Brian Smith <brian@briansmith.org>
//! Arithmetic on scalars (integers mod the group order).
//!
//! Both the Ristretto group and the Ed25519 basepoint have prime order
//! \\( \ell = 2\^{252} + 27742317777372353535851937790883648493 \\).
//!
//! This code is intended to be useful with both the Ristretto group
//! (where everything is done modulo \\( \ell \\)), and the X/Ed25519
//! setting, which mandates specific bit-twiddles that are not
//! well-defined modulo \\( \ell \\).
//!
//! All arithmetic on `Scalars` is done modulo \\( \ell \\).
//!
//! # Constructing a scalar
//!
//! To create a [`Scalar`](struct.Scalar.html) from a supposedly canonical encoding, use
//! [`Scalar::from_canonical_bytes`](struct.Scalar.html#method.from_canonical_bytes).
//!
//! This function does input validation, ensuring that the input bytes
//! are the canonical encoding of a `Scalar`.
//! If they are, we'll get
//! `Some(Scalar)` in return:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let one_as_bytes: [u8; 32] = Scalar::one().to_bytes();
//! let a: Option<Scalar> = Scalar::from_canonical_bytes(one_as_bytes);
//!
//! assert!(a.is_some());
//! ```
//!
//! However, if we give it bytes representing a scalar larger than \\( \ell \\)
//! (in this case, \\( \ell + 2 \\)), we'll get `None` back:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//! 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//! 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Option<Scalar> = Scalar::from_canonical_bytes(l_plus_two_bytes);
//!
//! assert!(a.is_none());
//! ```
//!
//! Another way to create a `Scalar` is by reducing a \\(256\\)-bit integer mod
//! \\( \ell \\), for which one may use the
//! [`Scalar::from_bytes_mod_order`](struct.Scalar.html#method.from_bytes_mod_order)
//! method. In the case of the second example above, this would reduce the
//! resultant scalar \\( \mod \ell \\), producing \\( 2 \\):
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//! 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//! 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Scalar = Scalar::from_bytes_mod_order(l_plus_two_bytes);
//!
//! let two: Scalar = Scalar::one() + Scalar::one();
//!
//! assert!(a == two);
//! ```
//!
//! There is also a constructor that reduces a \\(512\\)-bit integer,
//! [`Scalar::from_bytes_mod_order_wide`](struct.Scalar.html#method.from_bytes_mod_order_wide).
//!
//! To construct a `Scalar` as the hash of some input data, use
//! [`Scalar::hash_from_bytes`](struct.Scalar.html#method.hash_from_bytes),
//! which takes a buffer, or
//! [`Scalar::from_hash`](struct.Scalar.html#method.from_hash),
//! which allows an IUF API.
//!
//! ```
//! # extern crate curve25519_dalek;
//! # extern crate sha2;
//! #
//! # fn main() {
//! use sha2::{Digest, Sha512};
//! use curve25519_dalek::scalar::Scalar;
//!
//! // Hashing a single byte slice
//! let a = Scalar::hash_from_bytes::<Sha512>(b"Abolish ICE");
//!
//! // Streaming data into a hash object
//! let mut hasher = Sha512::default();
//! hasher.input(b"Abolish ");
//! hasher.input(b"ICE");
//! let a2 = Scalar::from_hash(hasher);
//!
//! assert_eq!(a, a2);
//! # }
//! ```
//!
//! Finally, to create a `Scalar` with a specific bit-pattern
//! (e.g., for compatibility with X/Ed25519
//! ["clamping"](https://github.com/isislovecruft/ed25519-dalek/blob/f790bd2ce/src/ed25519.rs#L349)),
//! use [`Scalar::from_bits`](struct.Scalar.html#method.from_bits). This
//! constructs a scalar with exactly the bit pattern given, without any
//! assurances as to reduction modulo the group order:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//! 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//! 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//! 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Scalar = Scalar::from_bits(l_plus_two_bytes);
//!
//! let two: Scalar = Scalar::one() + Scalar::one();
//!
//! assert!(a != two); // the scalar is not reduced (mod l)…
//! assert!(! a.is_canonical()); // …and therefore is not canonical.
//! assert!(a.reduce() == two); // if we were to reduce it manually, it would be.
//! ```
//!
//! The resulting `Scalar` has exactly the specified bit pattern,
//! **except for the highest bit, which will be set to 0**.
use core::borrow::Borrow;
use core::cmp::{Eq, PartialEq};
use core::fmt::Debug;
use core::iter::{Product, Sum};
use core::ops::Index;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};
#[allow(unused_imports)]
use prelude::*;
use rand_core::{CryptoRng, RngCore};
use digest::generic_array::typenum::U64;
use digest::Digest;
use subtle::Choice;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;
use zeroize::Zeroize;
use backend;
use constants;
/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u64_backend")]
type UnpackedScalar = backend::serial::u64::scalar::Scalar52;
/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u32_backend")]
type UnpackedScalar = backend::serial::u32::scalar::Scalar29;
/// The `Scalar` struct holds an integer \\(s < 2\^{255} \\) which
/// represents an element of \\(\mathbb Z / \ell\\).
#[derive(Copy, Clone)]
pub struct Scalar {
/// `bytes` is a little-endian byte encoding of an integer representing a scalar modulo the
/// group order.
///
/// # Invariant
///
/// The integer representing this scalar must be bounded above by \\(2\^{255}\\), or
/// equivalently the high bit of `bytes[31]` must be zero.
///
/// This ensures that there is room for a carry bit when computing a NAF representation.
//
// XXX This is pub(crate) so we can write literal constants. If const fns were stable, we could
// make the Scalar constructors const fns and use those instead.
pub(crate) bytes: [u8; 32],
}
impl Scalar {
/// Construct a `Scalar` by reducing a 256-bit little-endian integer
/// modulo the group order \\( \ell \\).
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar {
// Temporarily allow s_unreduced.bytes > 2^255 ...
let s_unreduced = Scalar{bytes};
// Then reduce mod the group order and return the reduced representative.
let s = s_unreduced.reduce();
debug_assert_eq!(0u8, s[31] >> 7);
s
}
/// Construct a `Scalar` by reducing a 512-bit little-endian integer
/// modulo the group order \\( \ell \\).
pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar {
UnpackedScalar::from_bytes_wide(input).pack()
}
/// Attempt to construct a `Scalar` from a canonical byte representation.
///
/// # Return
///
/// - `Some(s)`, where `s` is the `Scalar` corresponding to `bytes`,
/// if `bytes` is a canonical byte representation;
/// - `None` if `bytes` is not a canonical byte representation.
pub fn from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
// Check that the high bit is not set
if (bytes[31] >> 7) != 0u8 { return None; }
let candidate = Scalar::from_bits(bytes);
if candidate.is_canonical() {
Some(candidate)
} else {
None
}
}
/// Construct a `Scalar` from the low 255 bits of a 256-bit integer.
///
/// This function is intended for applications like X25519 which
/// require specific bit-patterns when performing scalar
/// multiplication.
pub fn from_bits(bytes: [u8; 32]) -> Scalar {
let mut s = Scalar{bytes};
// Ensure that s < 2^255 by masking the high bit
s.bytes[31] &= 0b0111_1111;
s
}
}
impl Debug for Scalar {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "Scalar{{\n\tbytes: {:?},\n}}", &self.bytes)
}
}
impl Eq for Scalar {}
impl PartialEq for Scalar {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl ConstantTimeEq for Scalar {
fn ct_eq(&self, other: &Self) -> Choice {
self.bytes.ct_eq(&other.bytes)
}
}
impl Index<usize> for Scalar {
type Output = u8;
/// Index the bytes of the representative for this `Scalar`. Mutation is not permitted.
fn index(&self, _index: usize) -> &u8 {
&(self.bytes[_index])
}
}
impl<'b> MulAssign<&'b Scalar> for Scalar {
fn mul_assign(&mut self, _rhs: &'b Scalar) {
*self = UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack();
}
}
define_mul_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Mul<&'b Scalar> for &'a Scalar {
type Output = Scalar;
fn mul(self, _rhs: &'b Scalar) -> Scalar {
UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack()
}
}
define_mul_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'b> AddAssign<&'b Scalar> for Scalar {
fn add_assign(&mut self, _rhs: &'b Scalar) {
*self = *self + _rhs;
}
}
define_add_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Add<&'b Scalar> for &'a Scalar {
type Output = Scalar;
#[allow(non_snake_case)]
fn add(self, _rhs: &'b Scalar) -> Scalar {
// The UnpackedScalar::add function produces reduced outputs
// if the inputs are reduced. However, these inputs may not
// be reduced -- they might come from Scalar::from_bits. So
// after computing the sum, we explicitly reduce it mod l
// before repacking.
let sum = UnpackedScalar::add(&self.unpack(), &_rhs.unpack());
let sum_R = UnpackedScalar::mul_internal(&sum, &constants::R);
let sum_mod_l = UnpackedScalar::montgomery_reduce(&sum_R);
sum_mod_l.pack()
}
}
define_add_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'b> SubAssign<&'b Scalar> for Scalar {
fn sub_assign(&mut self, _rhs: &'b Scalar) {
*self = *self - _rhs;
}
}
define_sub_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Sub<&'b Scalar> for &'a Scalar {
type Output = Scalar;
#[allow(non_snake_case)]
fn sub(self, rhs: &'b Scalar) -> Scalar {
// The UnpackedScalar::sub function requires reduced inputs
// and produces reduced output. However, these inputs may not
// be reduced -- they might come from Scalar::from_bits. So
// we explicitly reduce the inputs.
let self_R = UnpackedScalar::mul_internal(&self.unpack(), &constants::R);
let self_mod_l = UnpackedScalar::montgomery_reduce(&self_R);
let rhs_R = UnpackedScalar::mul_internal(&rhs.unpack(), &constants::R);
let rhs_mod_l = UnpackedScalar::montgomery_reduce(&rhs_R);
UnpackedScalar::sub(&self_mod_l, &rhs_mod_l).pack()
}
}
define_sub_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'a> Neg for &'a Scalar {
type Output = Scalar;
#[allow(non_snake_case)]
fn neg(self) -> Scalar {
let self_R = UnpackedScalar::mul_internal(&self.unpack(), &constants::R);
let self_mod_l = UnpackedScalar::montgomery_reduce(&self_R);
UnpackedScalar::sub(&UnpackedScalar::zero(), &self_mod_l).pack()
}
}
impl<'a> Neg for Scalar {
type Output = Scalar;
fn neg(self) -> Scalar {
-&self
}
}
impl ConditionallySelectable for Scalar {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
let mut bytes = [0u8; 32];
for i in 0..32 {
bytes[i] = u8::conditional_select(&a.bytes[i], &b.bytes[i], choice);
}
Scalar { bytes }
}
}
#[cfg(feature = "serde")]
use serde::{self, Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Visitor;
#[cfg(feature = "serde")]
impl Serialize for Scalar {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer
{
use serde::ser::SerializeTuple;
let mut tup = serializer.serialize_tuple(32)?;
for byte in self.as_bytes().iter() {
tup.serialize_element(byte)?;
}
tup.end()
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Scalar {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>
{
struct ScalarVisitor;
impl<'de> Visitor<'de> for ScalarVisitor {
type Value = Scalar;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("a valid point in Edwards y + sign format")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Scalar, A::Error>
where A: serde::de::SeqAccess<'de>
{
let mut bytes = [0u8; 32];
for i in 0..32 {
bytes[i] = seq.next_element()?
.ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?;
}
Scalar::from_canonical_bytes(bytes)
.ok_or(serde::de::Error::custom(
&"scalar was not canonically encoded"
))
}
}
deserializer.deserialize_tuple(32, ScalarVisitor)
}
}
impl<T> Product<T> for Scalar
where
T: Borrow<Scalar>
{
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = T>
{
iter.fold(Scalar::one(), |acc, item| acc * item.borrow())
}
}
impl<T> Sum<T> for Scalar
where
T: Borrow<Scalar>
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>
{
iter.fold(Scalar::zero(), |acc, item| acc + item.borrow())
}
}
impl Default for Scalar {
fn default() -> Scalar {
Scalar::zero()
}
}
impl From<u8> for Scalar {
fn from(x: u8) -> Scalar {
let mut s_bytes = [0u8; 32];
s_bytes[0] = x;
Scalar{ bytes: s_bytes }
}
}
impl From<u16> for Scalar {
fn from(x: u16) -> Scalar {
use byteorder::{ByteOrder, LittleEndian};
let mut s_bytes = [0u8; 32];
LittleEndian::write_u16(&mut s_bytes, x);
Scalar{ bytes: s_bytes }
}
}
impl From<u32> for Scalar {
fn from(x: u32) -> Scalar {
use byteorder::{ByteOrder, LittleEndian};
let mut s_bytes = [0u8; 32];
LittleEndian::write_u32(&mut s_bytes, x);
Scalar{ bytes: s_bytes }
}
}
impl From<u64> for Scalar {
/// Construct a scalar from the given `u64`.
///
/// # Inputs
///
/// An `u64` to convert to a `Scalar`.
///
/// # Returns
///
/// A `Scalar` corresponding to the input `u64`.
///
/// # Example
///
/// ```
/// use curve25519_dalek::scalar::Scalar;
///
/// let fourtytwo = Scalar::from(42u64);
/// let six = Scalar::from(6u64);
/// let seven = Scalar::from(7u64);
///
/// assert!(fourtytwo == six * seven);
/// ```
fn from(x: u64) -> Scalar {
use byteorder::{ByteOrder, LittleEndian};
let mut s_bytes = [0u8; 32];
LittleEndian::write_u64(&mut s_bytes, x);
Scalar{ bytes: s_bytes }
}
}
impl From<u128> for Scalar {
fn from(x: u128) -> Scalar {
use byteorder::{ByteOrder, LittleEndian};
let mut s_bytes = [0u8; 32];
LittleEndian::write_u128(&mut s_bytes, x);
Scalar{ bytes: s_bytes }
}
}
impl Zeroize for Scalar {
fn zeroize(&mut self) {
self.bytes.zeroize();
}
}
impl Scalar {
/// Return a `Scalar` chosen uniformly at random using a user-provided RNG.
///
/// # Inputs
///
/// * `rng`: any RNG which implements the `RngCore + CryptoRng` interface.
///
/// # Returns
///
/// A random scalar within /l.
///
/// # Example
///
/// ```
/// extern crate rand_core;
/// # extern crate curve25519_dalek;
/// #
/// # fn main() {
/// use curve25519_dalek::scalar::Scalar;
///
/// use rand_core::OsRng;
///
/// let mut csprng = OsRng;
/// let a: Scalar = Scalar::random(&mut csprng);
/// # }
pub fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
let mut scalar_bytes = [0u8; 64];
rng.fill_bytes(&mut scalar_bytes);
Scalar::from_bytes_mod_order_wide(&scalar_bytes)
}
/// Hash a slice of bytes into a scalar.
///
/// Takes a type parameter `D`, which is any `Digest` producing 64
/// bytes (512 bits) of output.
///
/// Convenience wrapper around `from_hash`.
///
/// # Example
///
/// ```
/// # extern crate curve25519_dalek;
/// # use curve25519_dalek::scalar::Scalar;
/// extern crate sha2;
///
/// use sha2::Sha512;
///
/// # // Need fn main() here in comment so the doctest compiles
/// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
/// # fn main() {
/// let msg = "To really appreciate architecture, you may even need to commit a murder";
/// let s = Scalar::hash_from_bytes::<Sha512>(msg.as_bytes());
/// # }
/// ```
pub fn hash_from_bytes<D>(input: &[u8]) -> Scalar
where D: Digest<OutputSize = U64> + Default
{
let mut hash = D::default();
hash.input(input);
Scalar::from_hash(hash)
}
/// Construct a scalar from an existing `Digest` instance.
///
/// Use this instead of `hash_from_bytes` if it is more convenient
/// to stream data into the `Digest` than to pass a single byte
/// slice.
///
/// # Example
///
/// ```
/// # extern crate curve25519_dalek;
/// # use curve25519_dalek::scalar::Scalar;
/// extern crate sha2;
///
/// use sha2::Digest;
/// use sha2::Sha512;
///
/// # fn main() {
/// let mut h = Sha512::new()
/// .chain("To really appreciate architecture, you may even need to commit a murder.")
/// .chain("While the programs used for The Manhattan Transcripts are of the most extreme")
/// .chain("nature, they also parallel the most common formula plot: the archetype of")
/// .chain("murder. Other phantasms were occasionally used to underline the fact that")
/// .chain("perhaps all architecture, rather than being about functional standards, is")
/// .chain("about love and death.");
///
/// let s = Scalar::from_hash(h);
///
/// println!("{:?}", s.to_bytes());
/// assert!(s == Scalar::from_bits([ 21, 88, 208, 252, 63, 122, 210, 152,
/// 154, 38, 15, 23, 16, 167, 80, 150,
/// 192, 221, 77, 226, 62, 25, 224, 148,
/// 239, 48, 176, 10, 185, 69, 168, 11, ]));
/// # }
/// ```
pub fn from_hash<D>(hash: D) -> Scalar
where D: Digest<OutputSize = U64>
{
let mut output = [0u8; 64];
output.copy_from_slice(hash.result().as_slice());
Scalar::from_bytes_mod_order_wide(&output)
}
/// Convert this `Scalar` to its underlying sequence of bytes.
///
/// # Example
///
/// ```
/// use curve25519_dalek::scalar::Scalar;
///
/// let s: Scalar = Scalar::zero();
///
/// assert!(s.to_bytes() == [0u8; 32]);
/// ```
pub fn to_bytes(&self) -> [u8; 32] {
self.bytes
}
/// View the little-endian byte encoding of the integer representing this Scalar.
///
/// # Example
///
/// ```
/// use curve25519_dalek::scalar::Scalar;
///
/// let s: Scalar = Scalar::zero();
///
/// assert!(s.as_bytes() == &[0u8; 32]);
/// ```
pub fn as_bytes(&self) -> &[u8; 32] {
&self.bytes
}
/// Construct the scalar \\( 0 \\).
pub fn zero() -> Self {
Scalar { bytes: [0u8; 32]}
}
/// Construct the scalar \\( 1 \\).
pub fn one() -> Self {
Scalar {
bytes: [
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
],
}
}
/// Given a nonzero `Scalar`, compute its multiplicative inverse.
///
/// # Warning
///
/// `self` **MUST** be nonzero. If you cannot
/// *prove* that this is the case, you **SHOULD NOT USE THIS
/// FUNCTION**.
///
/// # Returns
///
/// The multiplicative inverse of the this `Scalar`.
///
/// # Example
///
/// ```
/// use curve25519_dalek::scalar::Scalar;
///
/// // x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
/// let X: Scalar = Scalar::from_bytes_mod_order([
/// 0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
/// 0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
/// 0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
/// 0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
/// ]);
/// // 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
/// let XINV: Scalar = Scalar::from_bytes_mod_order([
/// 0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
/// 0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
/// 0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
/// 0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
/// ]);
///
/// let inv_X: Scalar = X.invert();
/// assert!(XINV == inv_X);
/// let should_be_one: Scalar = &inv_X * &X;
/// assert!(should_be_one == Scalar::one());
/// ```
pub fn invert(&self) -> Scalar {
self.unpack().invert().pack()
}
/// Given a slice of nonzero (possibly secret) `Scalar`s,
/// compute their inverses in a batch.
///
/// # Return
///
/// Each element of `inputs` is replaced by its inverse.
///
/// The product of all inverses is returned.
///
/// # Warning
///
/// All input `Scalars` **MUST** be nonzero. If you cannot
/// *prove* that this is the case, you **SHOULD NOT USE THIS
/// FUNCTION**.
///
/// # Example
///
/// ```
/// # extern crate curve25519_dalek;
/// # use curve25519_dalek::scalar::Scalar;
/// # fn main() {
/// let mut scalars = [
/// Scalar::from(3u64),
/// Scalar::from(5u64),
/// Scalar::from(7u64),
/// Scalar::from(11u64),
/// ];
///
/// let allinv = Scalar::batch_invert(&mut scalars);
///
/// assert_eq!(allinv, Scalar::from(3*5*7*11u64).invert());
/// assert_eq!(scalars[0], Scalar::from(3u64).invert());
/// assert_eq!(scalars[1], Scalar::from(5u64).invert());
/// assert_eq!(scalars[2], Scalar::from(7u64).invert());
/// assert_eq!(scalars[3], Scalar::from(11u64).invert());
/// # }
/// ```
#[cfg(feature = "alloc")]
pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar {
// This code is essentially identical to the FieldElement
// implementation, and is documented there. Unfortunately,
// it's not easy to write it generically, since here we want
// to use `UnpackedScalar`s internally, and `Scalar`s
// externally, but there's no corresponding distinction for
// field elements.
use zeroize::Zeroizing;
let n = inputs.len();
let one: UnpackedScalar = Scalar::one().unpack().to_montgomery();
// Place scratch storage in a Zeroizing wrapper to wipe it when
// we pass out of scope.
let scratch_vec = vec![one; n];
let mut scratch = Zeroizing::new(scratch_vec);
// Keep an accumulator of all of the previous products
let mut acc = Scalar::one().unpack().to_montgomery();
// Pass through the input vector, recording the previous
// products in the scratch space
for (input, scratch) in inputs.iter_mut().zip(scratch.iter_mut()) {
*scratch = acc;
// Avoid unnecessary Montgomery multiplication in second pass by
// keeping inputs in Montgomery form
let tmp = input.unpack().to_montgomery();
*input = tmp.pack();
acc = UnpackedScalar::montgomery_mul(&acc, &tmp);
}
// acc is nonzero iff all inputs are nonzero
debug_assert!(acc.pack() != Scalar::zero());
// Compute the inverse of all products
acc = acc.montgomery_invert().from_montgomery();
// We need to return the product of all inverses later
let ret = acc.pack();
// Pass through the vector backwards to compute the inverses
// in place
for (input, scratch) in inputs.iter_mut().rev().zip(scratch.iter().rev()) {
let tmp = UnpackedScalar::montgomery_mul(&acc, &input.unpack());
*input = UnpackedScalar::montgomery_mul(&acc, &scratch).pack();
acc = tmp;
}
ret
}
/// Get the bits of the scalar.
pub(crate) fn bits(&self) -> [i8; 256] {
let mut bits = [0i8; 256];
for i in 0..256 {
// As i runs from 0..256, the bottom 3 bits index the bit,
// while the upper bits index the byte.
bits[i] = ((self.bytes[i>>3] >> (i&7)) & 1u8) as i8;
}
bits
}
/// Compute a width-\\(w\\) "Non-Adjacent Form" of this scalar.
///
/// A width-\\(w\\) NAF of a positive integer \\(k\\) is an expression
/// $$
/// k = \sum_{i=0}\^m n\_i 2\^i,
/// $$
/// where each nonzero
/// coefficient \\(n\_i\\) is odd and bounded by \\(|n\_i| < 2\^{w-1}\\),
/// \\(n\_{m-1}\\) is nonzero, and at most one of any \\(w\\) consecutive
/// coefficients is nonzero. (Hankerson, Menezes, Vanstone; def 3.32).
///
/// The length of the NAF is at most one more than the length of
/// the binary representation of \\(k\\). This is why the
/// `Scalar` type maintains an invariant that the top bit is
/// \\(0\\), so that the NAF of a scalar has at most 256 digits.
///
/// Intuitively, this is like a binary expansion, except that we
/// allow some coefficients to grow in magnitude up to
/// \\(2\^{w-1}\\) so that the nonzero coefficients are as sparse
/// as possible.
///
/// When doing scalar multiplication, we can then use a lookup
/// table of precomputed multiples of a point to add the nonzero
/// terms \\( k_i P \\). Using signed digits cuts the table size
/// in half, and using odd digits cuts the table size in half
/// again.
///
/// To compute a \\(w\\)-NAF, we use a modification of Algorithm 3.35 of HMV:
///
/// 1. \\( i \gets 0 \\)
/// 2. While \\( k \ge 1 \\):
/// 1. If \\(k\\) is odd, \\( n_i \gets k \operatorname{mods} 2^w \\), \\( k \gets k - n_i \\).
/// 2. If \\(k\\) is even, \\( n_i \gets 0 \\).
/// 3. \\( k \gets k / 2 \\), \\( i \gets i + 1 \\).
/// 3. Return \\( n_0, n_1, ... , \\)
///
/// Here \\( \bar x = x \operatorname{mods} 2^w \\) means the
/// \\( \bar x \\) with \\( \bar x \equiv x \pmod{2^w} \\) and
/// \\( -2^{w-1} \leq \bar x < 2^w \\).
///
/// We implement this by scanning across the bits of \\(k\\) from
/// least-significant bit to most-significant-bit.
/// Write the bits of \\(k\\) as
/// $$
/// k = \sum\_{i=0}\^m k\_i 2^i,
/// $$
/// and split the sum as
/// $$
/// k = \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// $$
/// where the first part is \\( k \mod 2^w \\).
///
/// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w < 2^{w-1} \\), then we emit
/// \\( n_0 = k \mod 2^w \\). Instead of computing
/// \\( k - n_0 \\), we just advance \\(w\\) bits and reindex.
///
/// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w \ge 2^{w-1} \\), then
/// \\( n_0 = k \operatorname{mods} 2^w = k \mod 2^w - 2^w \\).
/// The quantity \\( k - n_0 \\) is
/// $$
/// \begin{aligned}
/// k - n_0 &= \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// - \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \\\\
/// &= 2^w + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// \end{aligned}
/// $$
/// so instead of computing the subtraction, we can set a carry
/// bit, advance \\(w\\) bits, and reindex.
///
/// If \\( k \mod 2^w\\) is even, we emit \\(0\\), advance 1 bit
/// and reindex. In fact, by setting all digits to \\(0\\)
/// initially, we don't need to emit anything.
pub(crate) fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
// required by the NAF definition
debug_assert!( w >= 2 );
// required so that the NAF digits fit in i8
debug_assert!( w <= 8 );
use byteorder::{ByteOrder, LittleEndian};
let mut naf = [0i8; 256];
let mut x_u64 = [0u64; 5];
LittleEndian::read_u64_into(&self.bytes, &mut x_u64[0..4]);
let width = 1 << w;
let window_mask = width - 1;
let mut pos = 0;
let mut carry = 0;
while pos < 256 {
// Construct a buffer of bits of the scalar, starting at bit `pos`
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let bit_buf: u64;
if bit_idx < 64 - w {
// This window's bits are contained in a single u64
bit_buf = x_u64[u64_idx] >> bit_idx;
} else {
// Combine the current u64's bits with the bits from the next u64
bit_buf = (x_u64[u64_idx] >> bit_idx) | (x_u64[1+u64_idx] << (64 - bit_idx));
}
// Add the carry into the current window
let window = carry + (bit_buf & window_mask);
if window & 1 == 0 {
// If the window value is even, preserve the carry and continue.
// Why is the carry preserved?
// If carry == 0 and window & 1 == 0, then the next carry should be 0
// If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
pos += 1;
continue;
}
if window < width/2 {
carry = 0;
naf[pos] = window as i8;
} else {
carry = 1;
naf[pos] = (window as i8).wrapping_sub(width as i8);
}
pos += w;
}
naf
}
/// Write this scalar in radix 16, with coefficients in \\([-8,8)\\),
/// i.e., compute \\(a\_i\\) such that
/// $$
/// a = a\_0 + a\_1 16\^1 + \cdots + a_{63} 16\^{63},
/// $$
/// with \\(-8 \leq a_i < 8\\) for \\(0 \leq i < 63\\) and \\(-8 \leq a_{63} \leq 8\\).
pub(crate) fn to_radix_16(&self) -> [i8; 64] {
debug_assert!(self[31] <= 127);
let mut output = [0i8; 64];
// Step 1: change radix.
// Convert from radix 256 (bytes) to radix 16 (nibbles)
#[inline(always)]
fn bot_half(x: u8) -> u8 { (x >> 0) & 15 }
#[inline(always)]
fn top_half(x: u8) -> u8 { (x >> 4) & 15 }
for i in 0..32 {
output[2*i ] = bot_half(self[i]) as i8;
output[2*i+1] = top_half(self[i]) as i8;
}
// Precondition note: since self[31] <= 127, output[63] <= 7
// Step 2: recenter coefficients from [0,16) to [-8,8)
for i in 0..63 {
let carry = (output[i] + 8) >> 4;
output[i ] -= carry << 4;
output[i+1] += carry;
}
// Precondition note: output[63] is not recentered. It
// increases by carry <= 1. Thus output[63] <= 8.
output
}
/// Returns a size hint indicating how many entries of the return
/// value of `to_radix_2w` are nonzero.
pub(crate) fn to_radix_2w_size_hint(w: usize) -> usize {
debug_assert!(w >= 6);
debug_assert!(w <= 8);
let digits_count = match w {
6 => (256 + w - 1)/w as usize,
7 => (256 + w - 1)/w as usize,
// See comment in to_radix_2w on handling the terminal carry.
8 => (256 + w - 1)/w + 1 as usize,
_ => panic!("invalid radix parameter"),
};
debug_assert!(digits_count <= 43);
digits_count
}
/// Creates a representation of a Scalar in radix 64, 128 or 256 for use with the Pippenger algorithm.
/// For lower radix, use `to_radix_16`, which is used by the Straus multi-scalar multiplication.
/// Higher radixes are not supported to save cache space. Radix 256 is near-optimal even for very
/// large inputs.
///
/// Radix below 64 or above 256 is prohibited.
/// This method returns digits in a fixed-sized array, excess digits are zeroes.
/// The second returned value is the number of digits.
///
/// ## Scalar representation
///
/// Radix \\(2\^w\\), with \\(n = ceil(256/w)\\) coefficients in \\([-(2\^w)/2,(2\^w)/2)\\),
/// i.e., scalar is represented using digits \\(a\_i\\) such that
/// $$
/// a = a\_0 + a\_1 2\^1w + \cdots + a_{n-1} 2\^{w*(n-1)},
/// $$
/// with \\(-2\^w/2 \leq a_i < 2\^w/2\\) for \\(0 \leq i < (n-1)\\) and \\(-2\^w/2 \leq a_{n-1} \leq 2\^w/2\\).
///
pub(crate) fn to_radix_2w(&self, w: usize) -> [i8; 43] {
debug_assert!(w >= 6);
debug_assert!(w <= 8);
use byteorder::{ByteOrder, LittleEndian};
// Scalar formatted as four `u64`s with carry bit packed into the highest bit.
let mut scalar64x4 = [0u64; 4];
LittleEndian::read_u64_into(&self.bytes, &mut scalar64x4[0..4]);
let radix: u64 = 1 << w;
let window_mask: u64 = radix - 1;
let mut carry = 0u64;
let mut digits = [0i8; 43];
let digits_count = (256 + w - 1)/w as usize;
for i in 0..digits_count {
// Construct a buffer of bits of the scalar, starting at `bit_offset`.
let bit_offset = i*w;
let u64_idx = bit_offset / 64;
let bit_idx = bit_offset % 64;
// Read the bits from the scalar
let bit_buf: u64;
if bit_idx < 64 - w || u64_idx == 3 {
// This window's bits are contained in a single u64,
// or it's the last u64 anyway.
bit_buf = scalar64x4[u64_idx] >> bit_idx;
} else {
// Combine the current u64's bits with the bits from the next u64
bit_buf = (scalar64x4[u64_idx] >> bit_idx) | (scalar64x4[1+u64_idx] << (64 - bit_idx));
}
// Read the actual coefficient value from the window
let coef = carry + (bit_buf & window_mask); // coef = [0, 2^r)
// Recenter coefficients from [0,2^w) to [-2^w/2, 2^w/2)
carry = (coef + (radix/2) as u64) >> w;
digits[i] = ((coef as i64) - (carry << w) as i64) as i8;
}
// When w < 8, we can fold the final carry onto the last digit d,
// because d < 2^w/2 so d + carry*2^w = d + 1*2^w < 2^(w+1) < 2^8.
//
// When w = 8, we can't fit carry*2^w into an i8. This should
// not happen anyways, because the final carry will be 0 for
// reduced scalars, but the Scalar invariant allows 255-bit scalars.
// To handle this, we expand the size_hint by 1 when w=8,
// and accumulate the final carry onto another digit.
match w {
8 => digits[digits_count] += carry as i8,
_ => digits[digits_count-1] += (carry << w) as i8,
}
digits
}
/// Unpack this `Scalar` to an `UnpackedScalar` for faster arithmetic.
pub(crate) fn unpack(&self) -> UnpackedScalar {
UnpackedScalar::from_bytes(&self.bytes)
}
/// Reduce this `Scalar` modulo \\(\ell\\).
#[allow(non_snake_case)]
pub fn reduce(&self) -> Scalar {
let x = self.unpack();
let xR = UnpackedScalar::mul_internal(&x, &constants::R);
let x_mod_l = UnpackedScalar::montgomery_reduce(&xR);
x_mod_l.pack()
}
/// Check whether this `Scalar` is the canonical representative mod \\(\ell\\).
///
/// This is intended for uses like input validation, where variable-time code is acceptable.
///
/// ```
/// # extern crate curve25519_dalek;
/// # extern crate subtle;
/// # use curve25519_dalek::scalar::Scalar;
/// # use subtle::ConditionallySelectable;
/// # fn main() {
/// // 2^255 - 1, since `from_bits` clears the high bit
/// let _2_255_minus_1 = Scalar::from_bits([0xff;32]);
/// assert!(!_2_255_minus_1.is_canonical());
///
/// let reduced = _2_255_minus_1.reduce();
/// assert!(reduced.is_canonical());
/// # }
/// ```
pub fn is_canonical(&self) -> bool {
*self == self.reduce()
}
}
impl UnpackedScalar {
/// Pack the limbs of this `UnpackedScalar` into a `Scalar`.
fn pack(&self) -> Scalar {
Scalar{ bytes: self.to_bytes() }
}
/// Inverts an UnpackedScalar in Montgomery form.
pub fn montgomery_invert(&self) -> UnpackedScalar {
// Uses the addition chain from
// https://briansmith.org/ecc-inversion-addition-chains-01#curve25519_scalar_inversion
let _1 = self;
let _10 = _1.montgomery_square();
let _100 = _10.montgomery_square();
let _11 = UnpackedScalar::montgomery_mul(&_10, &_1);
let _101 = UnpackedScalar::montgomery_mul(&_10, &_11);
let _111 = UnpackedScalar::montgomery_mul(&_10, &_101);
let _1001 = UnpackedScalar::montgomery_mul(&_10, &_111);
let _1011 = UnpackedScalar::montgomery_mul(&_10, &_1001);
let _1111 = UnpackedScalar::montgomery_mul(&_100, &_1011);
// _10000
let mut y = UnpackedScalar::montgomery_mul(&_1111, &_1);
#[inline]
fn square_multiply(y: &mut UnpackedScalar, squarings: usize, x: &UnpackedScalar) {
for _ in 0..squarings {
*y = y.montgomery_square();
}
*y = UnpackedScalar::montgomery_mul(y, x);
}
square_multiply(&mut y, 123 + 3, &_101);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 4, &_1001);
square_multiply(&mut y, 2, &_11);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 1 + 3, &_101);
square_multiply(&mut y, 3 + 3, &_101);
square_multiply(&mut y, 3, &_111);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 2 + 3, &_111);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1011);
square_multiply(&mut y, 2 + 4, &_1011);
square_multiply(&mut y, 6 + 4, &_1001);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 3 + 2, &_11);
square_multiply(&mut y, 3 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1001);
square_multiply(&mut y, 1 + 3, &_111);
square_multiply(&mut y, 2 + 4, &_1111);
square_multiply(&mut y, 1 + 4, &_1011);
square_multiply(&mut y, 3, &_101);
square_multiply(&mut y, 2 + 4, &_1111);
square_multiply(&mut y, 3, &_101);
square_multiply(&mut y, 1 + 2, &_11);
y
}
/// Inverts an UnpackedScalar not in Montgomery form.
pub fn invert(&self) -> UnpackedScalar {
self.to_montgomery().montgomery_invert().from_montgomery()
}
}
#[cfg(test)]
mod test {
use super::*;
use constants;
/// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
pub static X: Scalar = Scalar{
bytes: [
0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
],
};
/// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
pub static XINV: Scalar = Scalar{
bytes: [
0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
],
};
/// y = 2592331292931086675770238855846338635550719849568364935475441891787804997264
pub static Y: Scalar = Scalar{
bytes: [
0x90, 0x76, 0x33, 0xfe, 0x1c, 0x4b, 0x66, 0xa4,
0xa2, 0x8d, 0x2d, 0xd7, 0x67, 0x83, 0x86, 0xc3,
0x53, 0xd0, 0xde, 0x54, 0x55, 0xd4, 0xfc, 0x9d,
0xe8, 0xef, 0x7a, 0xc3, 0x1f, 0x35, 0xbb, 0x05,
],
};
/// x*y = 5690045403673944803228348699031245560686958845067437804563560795922180092780
static X_TIMES_Y: Scalar = Scalar{
bytes: [
0x6c, 0x33, 0x74, 0xa1, 0x89, 0x4f, 0x62, 0x21,
0x0a, 0xaa, 0x2f, 0xe1, 0x86, 0xa6, 0xf9, 0x2c,
0xe0, 0xaa, 0x75, 0xc2, 0x77, 0x95, 0x81, 0xc2,
0x95, 0xfc, 0x08, 0x17, 0x9a, 0x73, 0x94, 0x0c,
],
};
/// sage: l = 2^252 + 27742317777372353535851937790883648493
/// sage: big = 2^256 - 1
/// sage: repr((big % l).digits(256))
static CANONICAL_2_256_MINUS_1: Scalar = Scalar{
bytes: [
28, 149, 152, 141, 116, 49, 236, 214,
112, 207, 125, 115, 244, 91, 239, 198,
254, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 15,
],
};
static A_SCALAR: Scalar = Scalar{
bytes: [
0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d,
0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d,
0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1,
0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09,
],
};
static A_NAF: [i8; 256] =
[0,13,0,0,0,0,0,0,0,7,0,0,0,0,0,0,-9,0,0,0,0,-11,0,0,0,0,3,0,0,0,0,1,
0,0,0,0,9,0,0,0,0,-5,0,0,0,0,0,0,3,0,0,0,0,11,0,0,0,0,11,0,0,0,0,0,
-9,0,0,0,0,0,-3,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,9,0,
0,0,0,-15,0,0,0,0,-7,0,0,0,0,-9,0,0,0,0,0,5,0,0,0,0,13,0,0,0,0,0,-3,0,
0,0,0,-11,0,0,0,0,-7,0,0,0,0,-13,0,0,0,0,11,0,0,0,0,-9,0,0,0,0,0,1,0,0,
0,0,0,-15,0,0,0,0,1,0,0,0,0,7,0,0,0,0,0,0,0,0,5,0,0,0,0,0,13,0,0,0,
0,0,0,11,0,0,0,0,0,15,0,0,0,0,0,-9,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,7,
0,0,0,0,0,-15,0,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0];
static LARGEST_ED25519_S: Scalar = Scalar {
bytes: [
0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
],
};
static CANONICAL_LARGEST_ED25519_S_PLUS_ONE: Scalar = Scalar {
bytes: [
0x7e, 0x34, 0x47, 0x75, 0x47, 0x4a, 0x7f, 0x97,
0x23, 0xb6, 0x3a, 0x8b, 0xe9, 0x2a, 0xe7, 0x6d,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
],
};
static CANONICAL_LARGEST_ED25519_S_MINUS_ONE: Scalar = Scalar {
bytes: [
0x7c, 0x34, 0x47, 0x75, 0x47, 0x4a, 0x7f, 0x97,
0x23, 0xb6, 0x3a, 0x8b, 0xe9, 0x2a, 0xe7, 0x6d,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
],
};
#[test]
fn fuzzer_testcase_reduction() {
// LE bytes of 24519928653854221733733552434404946937899825954937634815
let a_bytes = [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// LE bytes of 4975441334397345751130612518500927154628011511324180036903450236863266160640
let b_bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 210, 210, 210, 255, 255, 255, 255, 10];
// LE bytes of 6432735165214683820902750800207468552549813371247423777071615116673864412038
let c_bytes = [134, 171, 119, 216, 180, 128, 178, 62, 171, 132, 32, 62, 34, 119, 104, 193, 47, 215, 181, 250, 14, 207, 172, 93, 75, 207, 211, 103, 144, 204, 56, 14];
let a = Scalar::from_bytes_mod_order(a_bytes);
let b = Scalar::from_bytes_mod_order(b_bytes);
let c = Scalar::from_bytes_mod_order(c_bytes);
let mut tmp = [0u8; 64];
// also_a = (a mod l)
tmp[0..32].copy_from_slice(&a_bytes[..]);
let also_a = Scalar::from_bytes_mod_order_wide(&tmp);
// also_b = (b mod l)
tmp[0..32].copy_from_slice(&b_bytes[..]);
let also_b = Scalar::from_bytes_mod_order_wide(&tmp);
let expected_c = &a * &b;
let also_expected_c = &also_a * &also_b;
assert_eq!(c, expected_c);
assert_eq!(c, also_expected_c);
}
#[test]
fn non_adjacent_form_test_vector() {
let naf = A_SCALAR.non_adjacent_form(5);
for i in 0..256 {
assert_eq!(naf[i], A_NAF[i]);
}
}
fn non_adjacent_form_iter(w: usize, x: &Scalar) {
let naf = x.non_adjacent_form(w);
// Reconstruct the scalar from the computed NAF
let mut y = Scalar::zero();
for i in (0..256).rev() {
y += y;
let digit = if naf[i] < 0 {
-Scalar::from((-naf[i]) as u64)
} else {
Scalar::from(naf[i] as u64)
};
y += digit;
}
assert_eq!(*x, y);
}
#[test]
fn non_adjacent_form_random() {
let mut rng = rand::thread_rng();
for _ in 0..1_000 {
let x = Scalar::random(&mut rng);
for w in &[5, 6, 7, 8] {
non_adjacent_form_iter(*w, &x);
}
}
}
#[test]
fn from_u64() {
let val: u64 = 0xdeadbeefdeadbeef;
let s = Scalar::from(val);
assert_eq!(s[7], 0xde);
assert_eq!(s[6], 0xad);
assert_eq!(s[5], 0xbe);
assert_eq!(s[4], 0xef);
assert_eq!(s[3], 0xde);
assert_eq!(s[2], 0xad);
assert_eq!(s[1], 0xbe);
assert_eq!(s[0], 0xef);
}
#[test]
fn scalar_mul_by_one() {
let test_scalar = &X * &Scalar::one();
for i in 0..32 {
assert!(test_scalar[i] == X[i]);
}
}
#[test]
fn add_reduces() {
// Check that the addition works
assert_eq!(
(LARGEST_ED25519_S + Scalar::one()).reduce(),
CANONICAL_LARGEST_ED25519_S_PLUS_ONE
);
// Check that the addition reduces
assert_eq!(
LARGEST_ED25519_S + Scalar::one(),
CANONICAL_LARGEST_ED25519_S_PLUS_ONE
);
}
#[test]
fn sub_reduces() {
// Check that the subtraction works
assert_eq!(
(LARGEST_ED25519_S - Scalar::one()).reduce(),
CANONICAL_LARGEST_ED25519_S_MINUS_ONE
);
// Check that the subtraction reduces
assert_eq!(
LARGEST_ED25519_S - Scalar::one(),
CANONICAL_LARGEST_ED25519_S_MINUS_ONE
);
}
#[test]
fn quarkslab_scalar_overflow_does_not_occur() {
// Check that manually-constructing large Scalars with
// from_bits cannot produce incorrect results.
//
// The from_bits function is required to implement X/Ed25519,
// while all other methods of constructing a Scalar produce
// reduced Scalars. However, this "invariant loophole" allows
// constructing large scalars which are not reduced mod l.
//
// This issue was discovered independently by both Jack
// "str4d" Grigg (issue #238), who noted that reduction was
// not performed on addition, and Laurent Grémy & Nicolas
// Surbayrole of Quarkslab, who noted that it was possible to
// cause an overflow and compute incorrect results.
//
// This test is adapted from the one suggested by Quarkslab.
let large_bytes = [
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
];
let a = Scalar::from_bytes_mod_order(large_bytes);
let b = Scalar::from_bits(large_bytes);
assert_eq!(a, b.reduce());
let a_3 = a + a + a;
let b_3 = b + b + b;
assert_eq!(a_3, b_3);
let neg_a = -a;
let neg_b = -b;
assert_eq!(neg_a, neg_b);
let minus_a_3 = Scalar::zero() - a - a - a;
let minus_b_3 = Scalar::zero() - b - b - b;
assert_eq!(minus_a_3, minus_b_3);
assert_eq!(minus_a_3, -a_3);
assert_eq!(minus_b_3, -b_3);
}
#[test]
fn impl_add() {
let two = Scalar::from(2u64);
let one = Scalar::one();
let should_be_two = &one + &one;
assert_eq!(should_be_two, two);
}
#[allow(non_snake_case)]
#[test]
fn impl_mul() {
let should_be_X_times_Y = &X * &Y;
assert_eq!(should_be_X_times_Y, X_TIMES_Y);
}
#[allow(non_snake_case)]
#[test]
fn impl_product() {
// Test that product works for non-empty iterators
let X_Y_vector = vec![X, Y];
let should_be_X_times_Y: Scalar = X_Y_vector.iter().product();
assert_eq!(should_be_X_times_Y, X_TIMES_Y);
// Test that product works for the empty iterator
let one = Scalar::one();
let empty_vector = vec![];
let should_be_one: Scalar = empty_vector.iter().product();
assert_eq!(should_be_one, one);
// Test that product works for iterators where Item = Scalar
let xs = [Scalar::from(2u64); 10];
let ys = [Scalar::from(3u64); 10];
// now zs is an iterator with Item = Scalar
let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x * y);
let x_prod: Scalar = xs.iter().product();
let y_prod: Scalar = ys.iter().product();
let z_prod: Scalar = zs.product();
assert_eq!(x_prod, Scalar::from(1024u64));
assert_eq!(y_prod, Scalar::from(59049u64));
assert_eq!(z_prod, Scalar::from(60466176u64));
assert_eq!(x_prod * y_prod, z_prod);
}
#[test]
fn impl_sum() {
// Test that sum works for non-empty iterators
let two = Scalar::from(2u64);
let one_vector = vec![Scalar::one(), Scalar::one()];
let should_be_two: Scalar = one_vector.iter().sum();
assert_eq!(should_be_two, two);
// Test that sum works for the empty iterator
let zero = Scalar::zero();
let empty_vector = vec![];
let should_be_zero: Scalar = empty_vector.iter().sum();
assert_eq!(should_be_zero, zero);
// Test that sum works for owned types
let xs = [Scalar::from(1u64); 10];
let ys = [Scalar::from(2u64); 10];
// now zs is an iterator with Item = Scalar
let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x + y);
let x_sum: Scalar = xs.iter().sum();
let y_sum: Scalar = ys.iter().sum();
let z_sum: Scalar = zs.sum();
assert_eq!(x_sum, Scalar::from(10u64));
assert_eq!(y_sum, Scalar::from(20u64));
assert_eq!(z_sum, Scalar::from(30u64));
assert_eq!(x_sum + y_sum, z_sum);
}
#[test]
fn square() {
let expected = &X * &X;
let actual = X.unpack().square().pack();
for i in 0..32 {
assert!(expected[i] == actual[i]);
}
}
#[test]
fn reduce() {
let biggest = Scalar::from_bytes_mod_order([0xff; 32]);
assert_eq!(biggest, CANONICAL_2_256_MINUS_1);
}
#[test]
fn from_bytes_mod_order_wide() {
let mut bignum = [0u8; 64];
// set bignum = x + 2^256x
for i in 0..32 {
bignum[ i] = X[i];
bignum[32+i] = X[i];
}
// 3958878930004874126169954872055634648693766179881526445624823978500314864344
// = x + 2^256x (mod l)
let reduced = Scalar{
bytes: [
216, 154, 179, 139, 210, 121, 2, 71,
69, 99, 158, 216, 23, 173, 63, 100,
204, 0, 91, 50, 219, 153, 57, 249,
28, 82, 31, 197, 100, 165, 192, 8,
],
};
let test_red = Scalar::from_bytes_mod_order_wide(&bignum);
for i in 0..32 {
assert!(test_red[i] == reduced[i]);
}
}
#[allow(non_snake_case)]
#[test]
fn invert() {
let inv_X = X.invert();
assert_eq!(inv_X, XINV);
let should_be_one = &inv_X * &X;
assert_eq!(should_be_one, Scalar::one());
}
// Negating a scalar twice should result in the original scalar.
#[allow(non_snake_case)]
#[test]
fn neg_twice_is_identity() {
let negative_X = -&X;
let should_be_X = -&negative_X;
assert_eq!(should_be_X, X);
}
#[test]
fn to_bytes_from_bytes_roundtrips() {
let unpacked = X.unpack();
let bytes = unpacked.to_bytes();
let should_be_unpacked = UnpackedScalar::from_bytes(&bytes);
assert_eq!(should_be_unpacked.0, unpacked.0);
}
#[test]
fn montgomery_reduce_matches_from_bytes_mod_order_wide() {
let mut bignum = [0u8; 64];
// set bignum = x + 2^256x
for i in 0..32 {
bignum[ i] = X[i];
bignum[32+i] = X[i];
}
// x + 2^256x (mod l)
// = 3958878930004874126169954872055634648693766179881526445624823978500314864344
let expected = Scalar{
bytes: [
216, 154, 179, 139, 210, 121, 2, 71,
69, 99, 158, 216, 23, 173, 63, 100,
204, 0, 91, 50, 219, 153, 57, 249,
28, 82, 31, 197, 100, 165, 192, 8
],
};
let reduced = Scalar::from_bytes_mod_order_wide(&bignum);
// The reduced scalar should match the expected
assert_eq!(reduced.bytes, expected.bytes);
// (x + 2^256x) * R
let interim = UnpackedScalar::mul_internal(&UnpackedScalar::from_bytes_wide(&bignum),
&constants::R);
// ((x + 2^256x) * R) / R (mod l)
let montgomery_reduced = UnpackedScalar::montgomery_reduce(&interim);
// The Montgomery reduced scalar should match the reduced one, as well as the expected
assert_eq!(montgomery_reduced.0, reduced.unpack().0);
assert_eq!(montgomery_reduced.0, expected.unpack().0)
}
#[test]
fn canonical_decoding() {
// canonical encoding of 1667457891
let canonical_bytes = [99, 99, 99, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,];
// encoding of
// 7265385991361016183439748078976496179028704920197054998554201349516117938192
// = 28380414028753969466561515933501938171588560817147392552250411230663687203 (mod l)
// non_canonical because unreduced mod l
let non_canonical_bytes_because_unreduced = [16; 32];
// encoding with high bit set, to check that the parser isn't pre-masking the high bit
let non_canonical_bytes_because_highbit = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128];
assert!( Scalar::from_canonical_bytes(canonical_bytes).is_some() );
assert!( Scalar::from_canonical_bytes(non_canonical_bytes_because_unreduced).is_none() );
assert!( Scalar::from_canonical_bytes(non_canonical_bytes_because_highbit).is_none() );
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_scalar_roundtrip() {
use bincode;
let encoded = bincode::serialize(&X).unwrap();
let parsed: Scalar = bincode::deserialize(&encoded).unwrap();
assert_eq!(parsed, X);
// Check that the encoding is 32 bytes exactly
assert_eq!(encoded.len(), 32);
// Check that the encoding itself matches the usual one
assert_eq!(
X,
bincode::deserialize(X.as_bytes()).unwrap(),
);
}
#[cfg(debug_assertions)]
#[test]
#[should_panic]
fn batch_invert_with_a_zero_input_panics() {
let mut xs = vec![Scalar::one(); 16];
xs[3] = Scalar::zero();
// This should panic in debug mode.
Scalar::batch_invert(&mut xs);
}
#[test]
fn batch_invert_empty() {
assert_eq!(Scalar::one(), Scalar::batch_invert(&mut []));
}
#[test]
fn batch_invert_consistency() {
let mut x = Scalar::from(1u64);
let mut v1: Vec<_> = (0..16).map(|_| {let tmp = x; x = x + x; tmp}).collect();
let v2 = v1.clone();
let expected: Scalar = v1.iter().product();
let expected = expected.invert();
let ret = Scalar::batch_invert(&mut v1);
assert_eq!(ret, expected);
for (a, b) in v1.iter().zip(v2.iter()) {
assert_eq!(a * b, Scalar::one());
}
}
fn test_pippenger_radix_iter(scalar: Scalar, w: usize) {
let digits_count = Scalar::to_radix_2w_size_hint(w);
let digits = scalar.to_radix_2w(w);
let radix = Scalar::from((1<<w) as u64);
let mut term = Scalar::one();
let mut recovered_scalar = Scalar::zero();
for digit in &digits[0..digits_count] {
let digit = *digit;
if digit != 0 {
let sdigit = if digit < 0 {
-Scalar::from((-(digit as i64)) as u64)
} else {
Scalar::from(digit as u64)
};
recovered_scalar += term * sdigit;
}
term *= radix;
}
// When the input is unreduced, we may only recover the scalar mod l.
assert_eq!(recovered_scalar, scalar.reduce());
}
#[test]
fn test_pippenger_radix() {
use core::iter;
// For each valid radix it tests that 1000 random-ish scalars can be restored
// from the produced representation precisely.
let cases = (2..100)
.map(|s| Scalar::from(s as u64).invert())
// The largest unreduced scalar, s = 2^255-1
.chain(iter::once(Scalar::from_bits([0xff; 32])));
for scalar in cases {
test_pippenger_radix_iter(scalar, 6);
test_pippenger_radix_iter(scalar, 7);
test_pippenger_radix_iter(scalar, 8);
}
}
}