mystuff/net/gurk-rs/files/vendor/curve25519-dalek/src/backend/serial/scalar_mul/straus.rs

197 lines
7.2 KiB
Rust

// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Implementation of the interleaved window method, also known as Straus' method.
#![allow(non_snake_case)]
use core::borrow::Borrow;
use edwards::EdwardsPoint;
use scalar::Scalar;
use traits::MultiscalarMul;
use traits::VartimeMultiscalarMul;
#[allow(unused_imports)]
use prelude::*;
/// Perform multiscalar multiplication by the interleaved window
/// method, also known as Straus' method (since it was apparently
/// [first published][solution] by Straus in 1964, as a solution to [a
/// problem][problem] posted in the American Mathematical Monthly in
/// 1963).
///
/// It is easy enough to reinvent, and has been repeatedly. The basic
/// idea is that when computing
/// \\[
/// Q = s_1 P_1 + \cdots + s_n P_n
/// \\]
/// by means of additions and doublings, the doublings can be shared
/// across the \\( P_i \\\).
///
/// We implement two versions, a constant-time algorithm using fixed
/// windows and a variable-time algorithm using sliding windows. They
/// are slight variations on the same idea, and are described in more
/// detail in the respective implementations.
///
/// [solution]: https://www.jstor.org/stable/2310929
/// [problem]: https://www.jstor.org/stable/2312273
pub struct Straus {}
impl MultiscalarMul for Straus {
type Point = EdwardsPoint;
/// Constant-time Straus using a fixed window of size \\(4\\).
///
/// Our goal is to compute
/// \\[
/// Q = s_1 P_1 + \cdots + s_n P_n.
/// \\]
///
/// For each point \\( P_i \\), precompute a lookup table of
/// \\[
/// P_i, 2P_i, 3P_i, 4P_i, 5P_i, 6P_i, 7P_i, 8P_i.
/// \\]
///
/// For each scalar \\( s_i \\), compute its radix-\\(2^4\\)
/// signed digits \\( s_{i,j} \\), i.e.,
/// \\[
/// s_i = s_{i,0} + s_{i,1} 16^1 + ... + s_{i,63} 16^{63},
/// \\]
/// with \\( -8 \leq s_{i,j} < 8 \\). Since \\( 0 \leq |s_{i,j}|
/// \leq 8 \\), we can retrieve \\( s_{i,j} P_i \\) from the
/// lookup table with a conditional negation: using signed
/// digits halves the required table size.
///
/// Then as in the single-base fixed window case, we have
/// \\[
/// \begin{aligned}
/// s_i P_i &= P_i (s_{i,0} + s_{i,1} 16^1 + \cdots + s_{i,63} 16^{63}) \\\\
/// s_i P_i &= P_i s_{i,0} + P_i s_{i,1} 16^1 + \cdots + P_i s_{i,63} 16^{63} \\\\
/// s_i P_i &= P_i s_{i,0} + 16(P_i s_{i,1} + 16( \cdots +16P_i s_{i,63})\cdots )
/// \end{aligned}
/// \\]
/// so each \\( s_i P_i \\) can be computed by alternately adding
/// a precomputed multiple \\( P_i s_{i,j} \\) of \\( P_i \\) and
/// repeatedly doubling.
///
/// Now consider the two-dimensional sum
/// \\[
/// \begin{aligned}
/// s\_1 P\_1 &=& P\_1 s\_{1,0} &+& 16 (P\_1 s\_{1,1} &+& 16 ( \cdots &+& 16 P\_1 s\_{1,63}&) \cdots ) \\\\
/// + & & + & & + & & & & + & \\\\
/// s\_2 P\_2 &=& P\_2 s\_{2,0} &+& 16 (P\_2 s\_{2,1} &+& 16 ( \cdots &+& 16 P\_2 s\_{2,63}&) \cdots ) \\\\
/// + & & + & & + & & & & + & \\\\
/// \vdots & & \vdots & & \vdots & & & & \vdots & \\\\
/// + & & + & & + & & & & + & \\\\
/// s\_n P\_n &=& P\_n s\_{n,0} &+& 16 (P\_n s\_{n,1} &+& 16 ( \cdots &+& 16 P\_n s\_{n,63}&) \cdots )
/// \end{aligned}
/// \\]
/// The sum of the left-hand column is the result \\( Q \\); by
/// computing the two-dimensional sum on the right column-wise,
/// top-to-bottom, then right-to-left, we need to multiply by \\(
/// 16\\) only once per column, sharing the doublings across all
/// of the input points.
fn multiscalar_mul<I, J>(scalars: I, points: J) -> EdwardsPoint
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator,
J::Item: Borrow<EdwardsPoint>,
{
use zeroize::Zeroizing;
use backend::serial::curve_models::ProjectiveNielsPoint;
use window::LookupTable;
use traits::Identity;
let lookup_tables: Vec<_> = points
.into_iter()
.map(|point| LookupTable::<ProjectiveNielsPoint>::from(point.borrow()))
.collect();
// This puts the scalar digits into a heap-allocated Vec.
// To ensure that these are erased, pass ownership of the Vec into a
// Zeroizing wrapper.
let scalar_digits_vec: Vec<_> = scalars
.into_iter()
.map(|s| s.borrow().to_radix_16())
.collect();
let scalar_digits = Zeroizing::new(scalar_digits_vec);
let mut Q = EdwardsPoint::identity();
for j in (0..64).rev() {
Q = Q.mul_by_pow_2(4);
let it = scalar_digits.iter().zip(lookup_tables.iter());
for (s_i, lookup_table_i) in it {
// R_i = s_{i,j} * P_i
let R_i = lookup_table_i.select(s_i[j]);
// Q = Q + R_i
Q = (&Q + &R_i).to_extended();
}
}
Q
}
}
impl VartimeMultiscalarMul for Straus {
type Point = EdwardsPoint;
/// Variable-time Straus using a non-adjacent form of width \\(5\\).
///
/// This is completely similar to the constant-time code, but we
/// use a non-adjacent form for the scalar, and do not do table
/// lookups in constant time.
///
/// The non-adjacent form has signed, odd digits. Using only odd
/// digits halves the table size (since we only need odd
/// multiples), or gives fewer additions for the same table size.
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<EdwardsPoint>>,
{
use backend::serial::curve_models::{CompletedPoint, ProjectiveNielsPoint, ProjectivePoint};
use window::NafLookupTable5;
use traits::Identity;
let nafs: Vec<_> = scalars
.into_iter()
.map(|c| c.borrow().non_adjacent_form(5))
.collect();
let lookup_tables = points
.into_iter()
.map(|P_opt| P_opt.map(|P| NafLookupTable5::<ProjectiveNielsPoint>::from(&P)))
.collect::<Option<Vec<_>>>()?;
let mut r = ProjectivePoint::identity();
for i in (0..256).rev() {
let mut t: CompletedPoint = r.double();
for (naf, lookup_table) in nafs.iter().zip(lookup_tables.iter()) {
if naf[i] > 0 {
t = &t.to_extended() + &lookup_table.select(naf[i] as usize);
} else if naf[i] < 0 {
t = &t.to_extended() - &lookup_table.select(-naf[i] as usize);
}
}
r = t.to_projective();
}
Some(r.to_extended())
}
}